Skip to main content

Towards Automated Order Picking Robots for Warehouses and Retail

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

Abstract

Order picking is one of the most expensive tasks in warehouses nowadays and at the same time one of the hardest to automate. Technical progress in automation technologies however allowed for first robotic products on fully automated picking in certain applications. This paper presents a mobile order picking robot for retail store or warehouse order fulfillment on typical packaged retail store items. This task is especially challenging due to the variety of items which need to be recognized and manipulated by the robot. Besides providing a comprehensive system overview the paper discusses the chosen techniques for textured object detection and manipulation in greater detail. The paper concludes with a general evaluation of the complete system and elaborates various potential avenues of further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset is available from the authors upon request (\({>}500\) GB).

  2. 2.

    The data set was captured with a another but similar recording system before the professional Kaptura recording system was available.

References

  1. Abbenseth, J., Lopez, F.G., Henkel, C., Dörr, S.: Cloud-based cooperative navigation for mobile service robots in dynamic industrial environments. In: Proceedings of the Symposium on Applied Computing, pp. 283–288. ACM (2017)

    Google Scholar 

  2. Causo, A., Chong, Z.H., Ramamoorthy, L.: A robust robot design for item picking. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  3. Chitta, S., Sucan, I., Cousins, S.: Moveit!. Robot. Autom. Mag. 19, 18–19 (2012)

    Article  Google Scholar 

  4. Correll, N., et al.: Analysis and observations from the first amazon picking challenge. IEEE Trans. Autom. Sci. Eng. 15(1), 172–188 (2018). https://doi.org/10.1109/TASE.2016.2600527

    Article  Google Scholar 

  5. Dörr, S., Barsch, P., Gruhler, M., Lopez, F.G.: Cooperative longterm SLAM for navigating mobile robots in industrial applications. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 297–303, September 2016. https://doi.org/10.1109/MFI.2016.7849504

  6. Eppner, C., et al.: Lessons from the amazon picking challenge: Four aspects of building robotic systems. In: Proceedings of Robotics: Science and Systems. AnnArbor, Michigan, June 2016. https://doi.org/10.15607/RSS.2016.XII.036

  7. Finlayson, G.D., Hordley, S.D., Xu, R.: Convex programming colour constancy with a diagonal-offset model. In: Proceedings of the IEEE International Conference on Image Processing, vol. 3, pp. III-948-51, September 2005. https://doi.org/10.1109/ICIP.2005.1530550

  8. Fischer, J., Arbeiter, G., Bormann, R., Verl, A.: A framework for object training and 6 DoF pose estimation. In: Proceedings of the 7th German Conference on Robotics (ROBOTIK), May 2012

    Google Scholar 

  9. Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2104–2109 (2013)

    Google Scholar 

  10. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance evaluation: a comprehensive review. Eur. J. Oper. Res. 203(3), 539–549 (2010). https://doi.org/10.1016/j.ejor.2009.07.031

    Article  MATH  Google Scholar 

  11. Henderson, C., Izquierdo, E.: Robust feature matching in the wild. In: Proceedings of Science and Information Conference (SAI), pp. 628–637, July 2015. https://doi.org/10.1109/SAI.2015.7237208

  12. Hernandez, C., et al.: Team delft’s robot winner of the amazon picking challenge 2016. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 613–624. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_51

    Chapter  Google Scholar 

  13. Hinterstoisser, S., et al.: Gradient response maps for real-time detection of textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 34, 876–888 (2012)

    Article  Google Scholar 

  14. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4569–4574 (2011). https://doi.org/10.1109/ICRA.2011.5980280

  16. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). https://doi.org/10.1016/j.ejor.2006.07.009

    Article  MATH  Google Scholar 

  17. Kramberger, A., Gams, A., Nemec, B., Ude, A.: Generalization of orientational motion in unit quaternion space. In: Proceedings of the IEEE International Conference on Humanoid Robots, pp. 808–813 (2016). https://doi.org/10.1109/HUMANOIDS.2016.7803366

  18. Kries, J.v.: Influence of adaptation on the effects produced by luminous stimuli. In: Sources of Color Science, pp. 120–126. The MIT Press, Cambridge, June 1970

    Google Scholar 

  19. Lopez, F.G., Abbenseth, J., Henkel, C., Dörr, S.: A predictive online path planning and optimization approach for cooperative mobile service robot navigation in industrial applications. In: Proceedings of the European Conference on Mobile Robots (ECMR), pp. 146–151 (2017)

    Google Scholar 

  20. Morrison, D., et al.: Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2018

    Google Scholar 

  21. Romea, A.C., Torres, M.M., Srinivasa, S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(1), 1284–1306 (2011)

    Google Scholar 

  22. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sign. Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055

    Article  MATH  Google Scholar 

  23. Sande, K.V.D., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010). https://doi.org/10.1109/TPAMI.2009.154

    Article  Google Scholar 

  24. Schuster, M., Bormann, R., Steidl, D., Reynolds-Haertle, S., Stilman, M.: Stable stacking for the distributor’s pallet packing problem. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 3646–3651, October 2010

    Google Scholar 

  25. Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. Robot. Autom. Mag. 19, 72–82 (2012)

    Article  Google Scholar 

  26. Ude, A.: Filtering in a unit quaternion space for model-based object tracking. Robot. Auton. Syst. 28(2), 163–172 (1999)

    Article  Google Scholar 

  27. Wafy, M., Madbouly, A.M.M.: Increase Efficiency of SURF using RGB Color Space. Int. J. Adv. Comput. Sci. Appl. (IJACSA), 6(8) (2015). https://doi.org/10.14569/IJACSA.2015.060810

  28. Zeng, A., Yu, K.T., Song, S., Suo, D., Walker, Jr. E., Rodriguez, A., Xiao, J.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  29. Zucker, M., et al.: Chomp: covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bormann, R., de Brito, B.F., Lindermayr, J., Omainska, M., Patel, M. (2019). Towards Automated Order Picking Robots for Warehouses and Retail. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics