Skip to main content

Criterion of Stability of a Linear System with One Harmonic Time-Varying Coefficient Based on a Formalized Filter Hypothesis

  • Conference paper
  • First Online:
Cyber-Physical Systems and Control (CPS&C 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 95))

Included in the following conference series:

  • 1161 Accesses

Abstract

Stability criterion for a linear time-varying (LTV) system with one harmonic time-varying coefficient in feedback is suggested. The found criterion is based on the hypothesis that the linear time-invariant (LTI) part of the system is a low-frequency filter. The criterion is simple and suitable for calculation of stability borders for LTV systems. The suggested criterion is compared with a numerical experiment, Bonjiorno criterion, stationarization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taft, V.A.: On the analysis of stability of periodic modes of operation in non-linear automatic control systems. J. Avtomat. i telemek 9 (1959)

    Google Scholar 

  2. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  3. Taft, V.A.: Electrical Circuits with Variable Parameters including Pulsed Control Systems. Pergamon, Oxford (translation from Russian) (1964)

    Google Scholar 

  4. Shamma, J.S., Athans, M.: Gain scheduling: potential hazards and possible remedies. IEEE Control Syst. Mag. 12, 101–107 (1992)

    Article  Google Scholar 

  5. Chechurin, S.L., Chechurin, L.S.: Elements of physical oscillation and control theory. In: Proceedings of the IEEE International Conference Physics and Control, St. Petersburg, vol. 2, pp. 589–594 (2003)

    Google Scholar 

  6. Bruzelius, F.: Linear Parameter-Varying Systems: An Approach to Gain Scheduling. Chalmers Univ. Technol. (2004)

    Google Scholar 

  7. Insperger, T., Stépán, G.: Optimization of digital control with delay by periodic variation of the gain parameters. In: Proceedings of IFAC Workshop on Adaptation and Learning in Control and Signal Processing, and IFAC Workshop on Periodic Control Systems, Yokohama, Japan, pp. 145–150 (2004)

    Google Scholar 

  8. Allwright, J.C., Alessandro, A., Wong, H.P.: A note on asymptotic stabilization of linear systems by periodic, piecewise constant, output feedback. Automatica 41, 339–344 (2005)

    Google Scholar 

  9. Szyszkowski, W., Stilling, D.S.D.: On damping properties of a frictionless physical pendulum with a moving mass. Int. J. Non Linear Mech. 40(5), 669–681 (2005)

    Article  ADS  Google Scholar 

  10. Baños, A., Barreiro, A., Beker, O.: Stability analysis of reset control systems with reset band. IFAC Proc. Vol. 42(17), 180–185 (2009)

    Article  Google Scholar 

  11. Mailybaev, A.A., Seyranian, A.P.: Stabilization of statically unstable systems by parametric excitation. J. Sound Vib. 323, 1016–1031 (2009)

    Article  ADS  Google Scholar 

  12. Eissa, M., Kamel, M., El-Sayed, A.T.: Vibration reduction of a nonlinear spring pendulum under multi external and parametric excitations via a longitudinal absorber. Mechanica 46, 325–340 (2011)

    Article  MathSciNet  Google Scholar 

  13. Arkhipova, I.M., Luongo, A., Seyranian, A.P.: Vibrational stabilization of the upright statically unstable position of a double pendulum. J. Sound Vib. 331(2), 457–469 (2012)

    Article  ADS  Google Scholar 

  14. Abe, A.: Non-linear control technique of a pendulum via cable length manipulation: application of particle swarm optimization to controller design. FME Trans. 41(4), 265–270 (2013)

    Google Scholar 

  15. Amer, Y.A., Ahmed, E.E.: Vibration control of a nonlinear dynamical system with time varying stiffness subjected to multi external forces. Int. J. Eng. Appl. Sci. (IJEAS) 5(4), 50–64 (2014)

    Google Scholar 

  16. Arkhipova, I.M., Luongo, A.: Stabilization via parametric excitation of multi-dof statically unstable systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3913–3926 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mandrik, A.V., Chechurin, L.S., Chechurin, S.L.: Frequency analysis of parametrically controlled oscillating systems. In: Proceedings of the 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON 2015), St. Petersburg, Russia, 24–26 June 2015. IFAC-PapersOnLine, 48(11), 651–655 (2015)

    Google Scholar 

  18. Reguera, F., Dotti, F.E., Machado, S.P.: Rotation control of a parametrically excited pendulum by adjusting its length. Mech. Res. Commun. 72, 74–80 (2016)

    Google Scholar 

  19.  Scapolan, M., Tehrani, M.G., Bonisoli, E.: Energy harvesting using a parametric resonant system due to time-varying damping. Mech. Syst. Signal Process., 1–17 (2016)

    Google Scholar 

  20. Mandrik, A.V.: Estimation of stability of oscillations of linear time-varying systems with one time-varying parameter with calculation of influence of higher frequency motions. Autom. Control. Comput. Sci. 51(3), 141–148 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Mandrik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandrik, A. (2020). Criterion of Stability of a Linear System with One Harmonic Time-Varying Coefficient Based on a Formalized Filter Hypothesis. In: Arseniev, D., Overmeyer, L., Kälviäinen, H., Katalinić, B. (eds) Cyber-Physical Systems and Control. CPS&C 2019. Lecture Notes in Networks and Systems, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-34983-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34983-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34982-0

  • Online ISBN: 978-3-030-34983-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics