Skip to main content

Lie Algebras, Lie Groups, and Algebra of Incidence

  • Chapter
  • First Online:
Geometric Algebra Applications Vol. II
  • 1051 Accesses

Abstract

We have learned that readers of the work of Hestenes and Sobzyk [1, Chap. 8] and a late article of Doran et al. [2] section IV may have difficulties to understand the subject and practitioners have difficulties to try the equations in certain applications. For this reason, this chapter reviews concepts and equations most of them introduced by Hestenes and Sobzyk [1, Chap. 8] and the article of Doran et al. [2, Sect. IV]. This chapter is written in a clear manner for readers interested in applications in computer science and engineering. The explained equations will be required to understand advanced applications in next chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hestenes, D., & Sobczyk, G. (1984). Clifford algebra to geometric calculus: A unified language for mathematics and physics. Dordrecht: D. Reidel.

    Book  Google Scholar 

  2. Doran, C., Hestenes, D., Sommen, F., & Van Acker, N. (1993). Lie groups and spin groups. Journal of Mathematical Physics, 34(8), 3642–3669.

    Google Scholar 

  3. Doran, C., & Lasenby, A. (2005). Geometric algebra for physicists. Cambridge University Press.

    Google Scholar 

  4. Sobczyk, G. (2001). Universal geometric algebra. In E. Bayro-Corrochano & G. Sobczyk (Eds.), Advances in geometric algebra with applications in science and engineering (pp. 18–41). Boston: Birkhäuser.

    Google Scholar 

  5. Sommen, F., & Van Acker, N. (1993). SO(m)-invariant differential operators on Clifford algebra-valued functions. Foundations of Physics, 23(11), 1491–1519.

    Article  MathSciNet  Google Scholar 

  6. Doran, C. (1994). Geometric algebra and its applications to mathematical physics. Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  7. Li, H., Huang, L., Shao, Ch., & Dong, L. (2015). Three-dimensional projective geometry with geometric algebra. arXiv:1507.06634v1.

  8. Bayro-Corrochano, E. (2001). Geometric computing for perception action systems. New York: Springer-Verlag.

    Book  Google Scholar 

  9. Bayro-Corrochano, E., Daniilidis, K., & Sommer, G. (2000). Motor algebra for 3D kinematics. The case of the hand–eye calibration. In International Journal of Mathematical Imaging and Vision, 13(2), 79–99.

    Google Scholar 

  10. Bayro-Corrochano, E. (2010). Geometric computing for wavelet transforms, robot vision, learning, control and action. London: Springer-Verlag.

    Google Scholar 

  11. Li, H., & Zhang, L. (2011). Line geometry in terms of the null geometric algebra over \(\mathbb{R}^{3,3}\), and applications to the inverse singularity of generalized Stewart plataforms. In L. Dorst & J. Lasenby (Eds.), Guide to geometric algebra in practice (pp. 253–272). New York: Springer-Verlag.

    Chapter  Google Scholar 

  12. Klawitter, D. (2014). A Clifford algebraic approach to line geometry. Advances in Applied Clifford Algebra, 24, 713–736.

    Article  MathSciNet  Google Scholar 

  13. Dorst, L. (2015). 3D Projective geoemtry through versors of \(\mathbb{R}^{3,3}\). Advances in Applied Clifford Algebras, 26, 1137–1172.

    Article  MathSciNet  Google Scholar 

  14. Hartley, R. I., & Zissermann, A. (2003). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  15. Pozo, J. M., & Sobczyk, G. (2001). Realizations of the conformal group. In E. Bayro-Corrochano & G. Sobczyk, (Eds.), Geometric algebra with applications in science and engineerings (pp. 42–60). Boston: Birkhäuser.

    Google Scholar 

  16. Belinfante, J., & Kolman, B. (1972). Lie groups and lie algebras: With applications and computational methods. Philadelphia: SIAM.

    MATH  Google Scholar 

  17. Fulton, W., & Harris, J. (1991). Representation theory: A first course. New York: Springer-Verlag.

    MATH  Google Scholar 

  18. Sobczyk, G. (1997). The generalized spectral decomposition of a linear operator. The College Mathematics Journal, 28(1), 27–38.

    Article  MathSciNet  Google Scholar 

  19. Riesz, M. (1958). Clifford numbers and spinors. Lecture Series no. 38, University of Maryland. Reprinted as facsimile, E.F. Bolinder & P. Lounesto, (Eds.) (1993). Dordrecht: Kluwer.

    Google Scholar 

  20. Miller, W. (1968). Lie theory and special functions. New York: Academic Press.

    MATH  Google Scholar 

  21. Sobczyk, G. (1997). Spectral integral domains in the classroom. Aportaciones Matemáticas, Serie Comunicaciones, 20, 169–188.

    MathSciNet  MATH  Google Scholar 

  22. Lounesto, P. (1987). CLICAL software packet and user manual. Helsinki University of Technology of Mathematics, Research report A248.

    Google Scholar 

  23. Li, H., Hestenes, D., & Rockwood, A. (2001). Generalized homogeneous coordinates for computational geometry. In G. Sommer (Ed.), Geometric computing with Clifford algebra (pp. 27–52). New York: Springer-Verlag.

    Chapter  Google Scholar 

  24. Hoffman, W. C. (1966). The Lie algebra of visual perception. Journal of Mathematical Psychology, 3, 65–98.

    Article  MathSciNet  Google Scholar 

  25. Blaschke, W. (1960). Kinematik und Quaternionen. Berlin: VEB Deutscher Verlag der Wissenschaften.

    MATH  Google Scholar 

  26. Selig, J. (2000). Robotics kinematics and flags. In E. Bayro-Corrochano & G. Sobczyk (Eds.), Advances in geometric algebra with applications in science and engineering (pp. 211–234). Boston: Birkhäuser.

    Google Scholar 

  27. Selig, J. M. (1999). Clifford algebra of points, lines and planes. Technical report SBU-CISM-99-06, South Bank University, School of Computing, Information Technology and Maths.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bayro-Corrochano .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayro-Corrochano, E. (2020). Lie Algebras, Lie Groups, and Algebra of Incidence. In: Geometric Algebra Applications Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-030-34978-3_3

Download citation

Publish with us

Policies and ethics