Skip to main content

Robot Neurocontrol

  • Chapter
  • First Online:
Geometric Algebra Applications Vol. II
  • 1032 Accesses

Abstract

Biological creatures are able to perform complex tasks, due to the capacity of the brain to store information and to adapt its neuro connections as necessary, and this is known as synaptic plasticity [1]. The neuroplasticity was investigated and later used in Artificial Neural Networks (ANN), where these ANN were called the third generation of neural networks [2]. The main advantage of the third generation of neural networks, or Spiking Neural Networks (SNN), is the ability to mimic the biological behavior, where this characteristic can be used in a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  MathSciNet  Google Scholar 

  2. Maass, W. (1997). Networks of spiking neurons: The third generation of neural network models. IEEE Transactions on Neural Networks, 10(9), 1659–1671.

    Article  Google Scholar 

  3. Abiyev, R. H., Kaynak, O., & Oniz, Y. (2012). Spiking neural networks for identification and control of dynamic plants. In International Conference on Advanced Intelligent Mechatronics.

    Google Scholar 

  4. Lechuga-Gutiérrez, L. R., & Bayro-Corrochano, E. (2016). Quaternion spike neural networks. In International Symposium on Neural Networks (ISNN) (Vol. 9719, pp. 640–646).

    Google Scholar 

  5. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 9(4), 500–544.

    Article  Google Scholar 

  6. Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for rapid processing. Neural Networks, 14(4), 715–725 (Elsevier).

    Google Scholar 

  7. Van Rullen, R., Delorme, A., Gautrais, J., & Thorpe, S. (1999). SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26–27(8), 989–996.

    Google Scholar 

  8. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models, single neurons, population, plasticity. Cambridge: MIT Press.

    Book  Google Scholar 

  9. Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 1063–1070.

    Google Scholar 

  10. NatschlNager, T., & Ruf, B. (1998). Spatial and temporal pattern analysis via spiking neurons. Network: Computation in Neural Systems, 9(3), 319–332.

    Google Scholar 

  11. Bohte, S., Kok, J., & Han, L. (2001). Error-back propagation in temporally encoded networks of spiking neurons. Network: Computation in Neural Systems, 1(48), 17–37.

    Google Scholar 

  12. Haykin, S. (1999). Neural networks: A comprehensive foundation. New York: Prentice-Hall.

    MATH  Google Scholar 

  13. Mohemmed, A., Schliebs, S., Matsuda, S., & Kasabov, N. (2011). Method for training a spiking neuron to associate input-output spike trains. In International Conference on Engineering Applications of Neural Networks IFIP International Conference on Artificial Intelligence Applications and Innovations EANN 2011. AIAI 2011: Engineering Applications of Neural Networks (Vol. 363, pp. 219–228).

    Google Scholar 

  14. Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control. New York: Wiley.

    Google Scholar 

  15. Selig, J. (1992). Introductory robotics. Hertfordshire, UK: Prentice Hall International.

    MATH  Google Scholar 

  16. Khalil, H. K. (2002). Nonlinear systems. East Lansing: Pearson.

    MATH  Google Scholar 

  17. Shao, Z., & Zhang, X. (2010). Intelligent control of flexible-joint manipulator based on singular perturbation. In IEEE International Conference on Automation and Logistics (ICAL).

    Google Scholar 

  18. Pró, E. A. (2012). Anatomía clínica pró. Editorial Panamericana.

    Google Scholar 

  19. Norton, R. L. (2009). Machine design. McGraw-Hill.

    Google Scholar 

  20. Shigley, J. E., Uicker, J. J., & de Contin, H. C. (1996). Theory of mechanisms and machines. McGraw-Hill.

    Google Scholar 

  21. Cuevas Jiménez, E. V., & Osuna Enciso, J. V. (2016). Optimización algoritmos programados con matlab. Alfaomega

    Google Scholar 

  22. Kapandji, A. I. (2006). Fisiología articular. Editorial médica Panamerica, Madrid, España.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bayro-Corrochano .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayro-Corrochano, E. (2020). Robot Neurocontrol. In: Geometric Algebra Applications Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-030-34978-3_13

Download citation

Publish with us

Policies and ethics