Skip to main content

Geometric Algebra for Modeling in Robotic Physics

  • Chapter
  • First Online:
Geometric Algebra Applications Vol. II

Abstract

In this chapter, we will discuss the advantages for geometric computing that geometric algebra offers for solving problems and developing algorithms in the fields of artificial intelligence, robotics, and intelligent machines acting within the perception and action cycle. We begin with a short tour of the history of mathematics to find the roots of the fundamental concepts of geometry and algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grassmann, H. (1877). Der Ort der Hamilton’schen Quaternionen in der Ausdehnungslehre. Mathematische Annalen, 12, 375.

    Article  MathSciNet  Google Scholar 

  2. Clifford, W. K. (1878). Applications of Grassmann’s extensive algebra. American Journal of Mathematics, 1, 350–358.

    Article  MathSciNet  Google Scholar 

  3. Hestenes, D. (1966). Space-time algebra. London: Gordon and Breach.

    MATH  Google Scholar 

  4. Hestenes, D., & Sobczyk, G. (1984). Clifford algebra to geometric calculus: A unified language for mathematics and physics. Dordrecht: D. Reidel.

    Book  Google Scholar 

  5. Hestenes, D. (1986). New foundations for classical mechanics. Dordrecht: D. Reidel.

    Book  Google Scholar 

  6. Hestenes, D., & Ziegler, R. (1991). Projective geometry with Clifford algebra. Acta Applicandae Mathematicae, 23, 25–63.

    Article  MathSciNet  Google Scholar 

  7. Li, H., Hestenes, D., & Rockwood, A. (2001). Generalized homogeneous coordinates for computational geometry. In G. Sommer (Ed.), Geometric computing with Clifford algebra (pp. 27–59). New York: Springer-Verlag.

    Chapter  Google Scholar 

  8. Hestenes, D. (2003). Orsted medal lecture 2002: Reforming the mathematical language of physics. American Journal of Physics, 71(2), 104–121.

    Article  Google Scholar 

  9. Hartley, R. I., & Zissermann, A. (2003). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  10. Bayro-Corrochano, E. (2018). Geometric algebra applications vol. I computer vision, graphics and neurocomputing. Springer Verlag.

    Google Scholar 

  11. Rivera-Rovelo, J., & Bayro-Corrochano, E. (2009). The use of geometric algebra for 3D modelling and registration of medical data. Journal of Mathematical Imaging and Vision, 34(1), 48–60.

    Article  MathSciNet  Google Scholar 

  12. Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in neural information processing systems (Vol. 7, pp. 625–632). MIT Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bayro-Corrochano .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayro-Corrochano, E. (2020). Geometric Algebra for Modeling in Robotic Physics. In: Geometric Algebra Applications Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-030-34978-3_1

Download citation

Publish with us

Policies and ethics