Skip to main content

Optimal Linear-Quadratic Controller Design

  • Chapter
  • First Online:
Controller Design for Distributed Parameter Systems

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

Linear quadratic optimal control is one of the most well-known approaches to controller design. The aim is to response of the system to the initial condition. There is a quadratic cost on the state and also the control. In this chapter, the theory for infinite-dimensional systems is described. As in the rest of this book, only bounded control operators are considered. An important issue is computation of the optimal linear quadratic controller. This is generally done via approximation of a Riccati equation. Standard PDE approximation methods are not always successful when used for controller design. Sufficient conditions for an approximation scheme to yield reliable results are provided. Also, for some problems, particularly those in more than one space dimension, the lumped approximation can be of high order. Standard direct methods can not always be used. A description of several methods for solution of algebraic Riccati equations is provided. Control actuator location can have a dramatic effect on control system performance for DPS. It should be considered part of controller synthesis. Results on this aspect of controller are described and illustrated.

We have bidden the world go round for our own amusement.

(George Gissing, The Odd Women)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris KA, Navasca C (2010) Approximation of low rank solutions for linear quadratic feedback control of partial differential equations. Comp Opt App 46(1):93–111

    Article  Google Scholar 

  2. Morris KA (2011) Linear quadratic optimal actuator location. IEEE Trans Autom Control 56:113–124

    Article  MathSciNet  Google Scholar 

  3. Yang SD, Morris KA (2015) Comparison of actuator placement criteria for control of structural vibrations. J Sound Vib 353:1–18

    Article  Google Scholar 

  4. Morris KA (2001) An introduction to feedback controller design. Harcourt-Brace Ltd

    Google Scholar 

  5. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, Berlin

    Google Scholar 

  6. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. Cambridge University Press, Cambridge

    Google Scholar 

  7. Gibson JS (1979) The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J Control Optim 17(4):637–665

    Article  MathSciNet  Google Scholar 

  8. Banks HT, Kunisch K (1984) The linear regulator problem for parabolic systems. SIAM J Control Optim 22(5):684–698

    Article  MathSciNet  Google Scholar 

  9. Ito K (1987) Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces. In: Schappacher W, Kappel F, Kunisch K (eds) Distributed parameter systems. Springer, Berlin

    Google Scholar 

  10. De Santis A, Germani A, Jetto L (1993) Approximation of the algebraic Riccati equation in the Hilbert space of Hilbert-Schmidt operators. SIAM J Control Optim 31(4):847–874

    Article  MathSciNet  Google Scholar 

  11. Burns JA, Ito K, Propst G (1988) On non-convergence of adjoint semigroups for control systems with delays. SIAM J Control Optim 26(6):1442–1454

    Article  MathSciNet  Google Scholar 

  12. Banks HT, Ito K (1997) Approximation in LQR problems for infinite-dimensional systems with unbounded input operators. J Math Systems Estim Control 7(1):1–34

    MathSciNet  MATH  Google Scholar 

  13. Burns JA, Sachs EW, Zietsman L (2008) Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space. SIAM J Control Optim 47(5):2663–2692

    Article  MathSciNet  Google Scholar 

  14. Curtain RF, Mikkola K, Sasane A (2007) The Hilbert-Schmidt property of feedback operators. J Math Anal Appl 329:1145–1160

    Article  MathSciNet  Google Scholar 

  15. Morris KA (1994) Design of finite-dimensional controllers for infinite-dimensional systems by approximation. J Math Syst Estim Control 4(2):1–30

    Google Scholar 

  16. Golub GH, van Loan CF (1989) Matrix computations. John Hopkins

    Google Scholar 

  17. Antoulas AC, Sorensen DC, Zhou Y (2002) On the decay rate of Hankel singular values and related issues. Syst Control Lett 46:323–342

    Article  MathSciNet  Google Scholar 

  18. Smith RA (1968) Matrix equation XA + BX = C. SIAM J Appl Math 16:198–201

    Article  MathSciNet  Google Scholar 

  19. Russell DL (1979) Mathematics of finite dimensional control systems: theory and design. Marcel Dekker

    Google Scholar 

  20. Lu A, Wachpress EL (1991) Solution of Lyapunov equations by alternating direction implicit iteration. Comput Math Appl 21(9):43–58

    Article  MathSciNet  Google Scholar 

  21. Wachpress E (1988) Iterative solution of the Lyapunov matrix equation. Appl Math Lett 1:87–90

    Article  MathSciNet  Google Scholar 

  22. Ellner N, Wachpress EL (1991) Alternating direction implicit iteration for systems with complex spectra. SIAM J Numer Anal 28(3):859–870

    Article  MathSciNet  Google Scholar 

  23. Li JR, White J (2002) Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl 24:260–280

    Article  MathSciNet  Google Scholar 

  24. Opmeer MR, Reis T, Wollner W (2013) Finite-rank ADI iteration for operator Lyapunov equations. SIAM J Control Optim 51(5):4084–4117

    Article  MathSciNet  Google Scholar 

  25. Penzl T (2000) A cyclic low-rank smith method for large sparse Lyapunov equations. SIAM J Sci Comput 21(4):1401–1418

    Article  MathSciNet  Google Scholar 

  26. Penzl T (2000) Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst Control Lett 40:139–144

    Article  MathSciNet  Google Scholar 

  27. Laub AJ (1979) A Schur method for solving algebraic Riccati equations. IEEE Trans Autom Control 24:913–921

    Article  MathSciNet  Google Scholar 

  28. Kleinman D (1968) On an iterative technique for Riccati equation computations. IEEE Trans Autom Control 13:114–115

    Article  Google Scholar 

  29. Banks HT, Ito K (1991) A numerical algorithm for optimal feedback gains in high-dimensional linear quadratic regulator problems. SIAM J Control Optim 29(3):499–515

    Article  MathSciNet  Google Scholar 

  30. Grad JR, Morris KA (1996) Solving the linear quadratic control problem for infinite-dimensional systems. Comput Math Appl 32(9):99–119

    Article  MathSciNet  Google Scholar 

  31. Guiver C, Opmeer MR (2013) Error bounds in the gap metric for dissipative balanced approximations. Linear Algebra Appl 439(12):3659–3698

    Article  MathSciNet  Google Scholar 

  32. Guiver C, Opmeer MR (2014) Model reduction by balanced truncation for systems with nuclear Hankel operators. SIAM J Control Optim 52(2):1366–1401

    Article  MathSciNet  Google Scholar 

  33. Oostveen JC, Curtain RF (1998) Riccati equations for strongly stabilizable bounded linear systems. Automatica 34(8):953–967

    Article  MathSciNet  Google Scholar 

  34. Oostveen JC, Curtain RF, Ito K (2000) An approximation theory for strongly stabilizing solutions to the operator LQ Riccati equation. SIAM J Control Optim 38(6):1909–1937

    Article  MathSciNet  Google Scholar 

  35. Peichl GH, Wang C (1997) On the uniform stabilizability and the margin of stabilizability of the finite-dimensional approximations of distributed parameter systems. J Math Syst Estim Control 7:277–304

    MATH  Google Scholar 

  36. Wu X, Jacob B, Elbern H (2015) Optimal control and observation locations for time-varying systems on a finite-time horizon. SIAM J Control Optim 54(1):291–316

    Article  MathSciNet  Google Scholar 

  37. Geromel JC (1989) Convex analysis and global optimization of joint actuator location and control problems. IEEE Trans Autom Control 34(7):711–720

    Article  MathSciNet  Google Scholar 

  38. Darivandi N, Morris K, Khajepour A (2013) An algorithm for LQ-optimal actuator location. Smart Mater Struct 22(3):035001

    Article  Google Scholar 

  39. Tröltzsch F (2010) Optimal control of partial differential equations, volume 112 of graduate studies in mathematics. American Mathematical Society, Providence, RI. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten A. Morris .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, K.A. (2020). Optimal Linear-Quadratic Controller Design. In: Controller Design for Distributed Parameter Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-34949-3_4

Download citation

Publish with us

Policies and ethics