Skip to main content

New Multiobjective Proximal Bundle Method with Scaled Improvement Function

  • Chapter
  • First Online:
Numerical Nonsmooth Optimization

Abstract

Improvement functions are used in nonsmooth optimization both for constraint handling and scalarization of multiple objectives. In the multiobjective case the improvement function possesses, for example the nice property that a descent direction for the improvement function improves all the objectives of the original problem. However, the numerical experiments have shown that the standard improvement function is rather sensitive for scaling. For this reason we present here a new scaled version of the improvement function capable not only for linear but also for polynomial, logarithmic, and exponential scaling for both objective and constraint functions. In order to be convinced about the usability of the scaled improvement function, we develop a new version of the multiobjective proximal bundle method utilizing the scaled improvement function. This new method can be proved to produce weakly Pareto stationary solutions. In addition, under some generalized convexity assumptions the solutions are guaranteed to be globally weakly Pareto optimal. Furthermore, we illustrate the affect of the scaling with some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auslender, A.: Numerical methods for nondifferentiable convex optimization. Math. Program. Study 30, 102–126 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, Heidelberg (2014)

    Google Scholar 

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  4. Da Cruz Neto, J.X., Da Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54(3), 461–472 (2013)

    Article  MathSciNet  Google Scholar 

  5. Handl, J., Kell, D.B., Knowles, J.D: Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2), 279–292 (2007)

    Article  Google Scholar 

  6. Hiriart-Urruty, J.B.: New concepts in nondifferentiable programming. Bull. de la Soc. Math. de France Mémoires 60, 57–85 (1979)

    Article  MathSciNet  Google Scholar 

  7. Jin, Y. (ed.) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol. 16. Springer, Berlin (2006)

    Google Scholar 

  8. Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth convex constrained optimization. Math. Program. 116, 297–320 (2009)

    Article  MathSciNet  Google Scholar 

  9. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985)

    Google Scholar 

  10. Kiwiel, K.C.: A descent method for nonsmooth convex multiobjective minimization. Large Scale Syst. 8(2), 119–129 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Kiwiel, K.C: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Program. 46, 105–122 (1990)

    Article  Google Scholar 

  12. Lemaréchal, C., Nemirovskii, A., Nesterov, Yu.: New variants of bundle methods. Math. Program. 69, 111–148 (1995)

    Article  MathSciNet  Google Scholar 

  13. Lukšan, L.: Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation. Kybernetika 20(6), 445–457 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific, Singapore (1992)

    Book  Google Scholar 

  15. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: Fortran Subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B, Scientific computing, B 13/2003. University of Jyväskylä, Jyväskylä (2003)

    Google Scholar 

  16. Mäkelä, M.M., Eronen, V.-P., Karmitsa, N.: On Nonsmooth Optimality Conditions with Generalized Convexities. TUCS Technical Reports 1056. Turku Centre for Computer Science, Turku (2012)

    Google Scholar 

  17. Mäkelä, M.M., Eronen, V.-P., Karmitsa, N.: On nonsmooth multiobjective optimality conditions with generalized convexities. In: Rassias, Th.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering: In Honor of the 60th Birthday of Panos M. Pardalos, pp. 333–357. Springer, New York (2014)

    Chapter  Google Scholar 

  18. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds.) Mathematical Modeling and Optimization of Complex Structures, pp. 191–204, Springer, Cham (2016)

    Google Scholar 

  19. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  20. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  21. Miettinen, K., Mäkelä, M.M.: Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34, 231–246 (1995)

    Article  MathSciNet  Google Scholar 

  22. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectr. 24(2), 193–213 (2002)

    Article  MathSciNet  Google Scholar 

  23. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191–207 (1977)

    Article  MathSciNet  Google Scholar 

  24. Montonen, O., Joki, K.: Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Glob. Optim. 72(3), 403–429 (2018)

    Article  MathSciNet  Google Scholar 

  25. Montonen, O., Karmitsa, N., Mäkelä, M.M.: Multiple subgradient descent bundle method for convex nonsmooth multiobjective optimization. Optimization 67(1), 139–158 (2018)

    Article  MathSciNet  Google Scholar 

  26. Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988)

    MATH  Google Scholar 

  27. Mukai, H.: Algorithms for multicriterion optimization. IEEE Trans. Autom. Control 25(2), 177–186 (1980)

    Article  MathSciNet  Google Scholar 

  28. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth approach to optimization problems with equilibrium constraints. In: Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  29. Pironneau, O., Polak, E.: Rate of convergence of a class of methods of feasible directions. SIAM J. Numer. Anal. 10, 161–174 (1973)

    Article  MathSciNet  Google Scholar 

  30. Qu, S., Liu, C., Goh, M., Li, Y., Ji, Y.: Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res. 235(3), 503–510 (2014)

    Article  MathSciNet  Google Scholar 

  31. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)

    Article  MathSciNet  Google Scholar 

  32. Schramm, H., Zowe, J.: A Version of the bundle idea for minimizing a nonsmooth functions: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)

    Article  MathSciNet  Google Scholar 

  33. Shin, W.S., Ravindran, A.: Interactive multiple objective optimization: survey I—continuous case. Comput. Oper. Res. 18(1), 97–114 (1991)

    Article  MathSciNet  Google Scholar 

  34. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Applications. Wiley, New York (1986)

    MATH  Google Scholar 

  35. Wang, S.: Algorithms for multiobjective and nonsmooth optimization. In: Kleinschmidt, P., Radermacher, F.J, Schweitzer, W., Wildermann, H. (eds.) Methods of Operations Research, vol. 58, pp. 131–142. Athenäum, Frankfurt am Main (1989)

    Google Scholar 

  36. Wu, W., Maier, H.R., Simpson, A.R.: Single-objective versus multiobjective optimization of water distribution systems accounting for greenhouse gas emissions by carbon pricing. J. Water Resour. Plan. Manag. 136(5), 555–565 (2010)

    Article  Google Scholar 

  37. Zoutendijk, G.: Methods of Feasible Directions: A Study in Linear and Nonlinear Programming. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University of Turku. The authors want to thank Prof. Dominikus Noll for the idea given during the HCM Workshop “Nonsmooth Optimization and its Applications” in Bonn, May 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko M. Mäkelä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mäkelä, M.M., Montonen, O. (2020). New Multiobjective Proximal Bundle Method with Scaled Improvement Function. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds) Numerical Nonsmooth Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-34910-3_13

Download citation

Publish with us

Policies and ethics