Skip to main content

Conical Intersections in Condensed Matter Physics

  • Chapter
  • First Online:
Conical Intersections in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 965))

  • 911 Accesses

Abstract

So far we have seen how conical intersections (CIs) appear in molecular systems, and how they may influence physical properties. These CIs showed up in the Born–Oppenheimer treatment and could be analysed in terms of synthetic gauge fields . Even though the adiabatic potential surfaces (APSs) often are given in normal vibrational coordinates, they still represent real space coordinates, i.e., the CIs appear in the real space. In this chapter, we see how CIs can occur in momentum space instead as so called Dirac cones or, as we will call them, Dirac CIs. The paradigmatic example of such Dirac CIs is graphene where carbon atoms form a two-dimensional hexagonal lattice. The periodicity of the lattice implies that the spectrum consists of energy bands restricted to the first Brillouin zone. Dirac CIs are point degeneracies of pairs of energy bands. We show, analogously to what we saw in the previous chapter, that there is a gauge structure connected to the physics of the bands. From this, one can define topological invariances like the Chern number. We discuss how the topological features are manifest in physical observables such as conductivity and edge states. While much of the chapter is devoted to periodic systems, we also give two examples where Dirac CIs emerge in continuum systems: spin–orbit coupled systems and superconductors. Superconductors differ from the other examples since the Dirac CIs appear at the mean-field level and require interaction between the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The derivation given here for the Rashba term is non-rigorous, but it actually results in the correct expression.

References

  1. Kohn, W.: Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. Brouder, C., Panati, G., Calandra, M., Mourougane, C., Marzari, N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)

    Article  ADS  Google Scholar 

  3. Bernevig, B.A.: Topological Insulators and Topological Superconductors. Princeton University Press, Princeton/Oxford (2013)

    Book  Google Scholar 

  4. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997)

    Article  ADS  Google Scholar 

  5. Zak, J.: Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747 (1989)

    Article  ADS  Google Scholar 

  6. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  7. Stanescu, T.D.: Introduction to Topological Quantum Matter and Computing. CRC Press, New York (2017)

    MATH  Google Scholar 

  8. Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  9. Kane, C.L., Mele, E.J.: Z 2 Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  10. Manchon, A., Koo, H.C., Nitta, J., Frolov, S.M., Duine, R.A.: New perspectives for Rashba spin-orbit coupling. Nature Mat. 14, 871 (2015)

    Article  ADS  Google Scholar 

  11. Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  12. Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E.: Quasiparticle dynamics in graphene. Nature Phys. 3, 36 (2007)

    Article  ADS  Google Scholar 

  13. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G., Esslinger, T.: Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302 (2012)

    Article  ADS  Google Scholar 

  14. Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., Esslinger, T.: Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237 (2014)

    Article  ADS  Google Scholar 

  16. Armitage, N.P., Mele, E.J., Vishwanath, A.: Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larson, J., Sjöqvist, E., Öhberg, P. (2020). Conical Intersections in Condensed Matter Physics. In: Conical Intersections in Physics. Lecture Notes in Physics, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-34882-3_4

Download citation

Publish with us

Policies and ethics