Skip to main content

Hierarchical Colour Image Segmentation by Leveraging RGB Channels Independently

  • Conference paper
  • First Online:
  • 1239 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11854))

Abstract

In this paper, we introduce a hierarchical colour image segmentation based on cuboid partitioning using simple statistical features of the pixel intensities in the RGB channels. Estimating the difference between any two colours is a challenging task. As most of the colour models are not perceptually uniform, investigation of an alternative strategy is highly demanding. To address this issue, for our proposed technique, we present a new concept for colour distance measure based on the inconsistency of pixel intensities of an image which is more compliant to human perception. Constructing a reliable set of superpixels from an image is fundamental for further merging. As cuboid partitioning is a superior candidate to produce superpixels, we use the agglomerative merging to yield the final segmentation results exploiting the outcome of our proposed cuboid partitioning. The proposed cuboid segmentation based algorithm significantly outperforms not only the quadtree-based segmentation but also existing state-of-the-art segmentation algorithms in terms of quality of segmentation for the benchmark datasets used in image segmentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Bagheri, S., Zheng, J.Y., Sinha, S.: Temporal mapping of surveillance video for indexing and summarization. Comput. Vis. Image Underst. 144, 237–257 (2016). http://www.sciencedirect.com/science/article/pii/S1077314215002581. Individual and Group Activities in Video Event Analysis

    Article  Google Scholar 

  4. Bentley, J.L., Haken, D., Saxe, J.B.: A general method for solving divide-and-conquer recurrences. SIGACT News 12(3), 36–44 (1980). https://doi.org/10.1145/1008861.1008865

    Article  MATH  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

    Google Scholar 

  6. Chen, C., Shao, Y., Bi, X.: Detection of anomalous crowd behavior based on the acceleration feature. IEEE Sens. J. 15(12), 7252–7261 (2015)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)

    Article  Google Scholar 

  9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  10. Freixenet, J., Muñoz, X., Raba, D., Martí J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: 7th European Conference on Computer Vision (2002)

    Google Scholar 

  11. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  12. Huang, K., Tan, T.: Vs-star: a visual interpretation system for visual surveillance. Pattern Recognit. Lett. 31(14), 2265–2285 (2010). http://www.sciencedirect.com/science/article/pii/S0167865510001868

    Article  Google Scholar 

  13. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963). https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845

    Article  MathSciNet  Google Scholar 

  14. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  15. Li, S., Wu, D.O.: Modularity-based image segmentation. IEEE Trans. Circ. Syst. Video Technol. 25(4), 570–581 (2015)

    Article  Google Scholar 

  16. Linares, O.A.C., Botelho, G.M., Rodrigues, F.A., Neto, J.B.: Segmentation of large images based on super-pixels and community detection in graphs. IET Image Proc. 11(12), 1219–1228 (2017)

    Article  Google Scholar 

  17. Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24(11), 3990–4000 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liu, T., Seyedhosseini, M., Tasdizen, T.: Image segmentation using hierarchical merge tree. IEEE Trans. Image Process. 25(10), 4596–4607 (2016)

    Article  MathSciNet  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  20. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_14

    Chapter  Google Scholar 

  21. Murshed, M., Teng, S.W., Lu, G.: Cuboid segmentation for effective image retrieval. In: 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8, November 2017

    Google Scholar 

  22. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 10–17, October 2003

    Google Scholar 

  23. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442(7104), 810–813 (2006). https://doi.org/10.1038/nature04977

    Article  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_1

    Chapter  Google Scholar 

  26. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J. ACM 23(2), 368–388 (1976)

    Article  Google Scholar 

  27. Syu, J., Wang, S., Wang, L.: Hierarchical image segmentation based on iterative contraction and merging. IEEE Trans. Image Process. 26(5), 2246–2260 (2017)

    Article  MathSciNet  Google Scholar 

  28. Tania, S., Murshed, M., Teng, S.W., Karmakar, G.: Cuboid colour image segmentation using intuitive distance measure. In: 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6, November 2018

    Google Scholar 

  29. Tapia, E.: A note on the computation of high-dimensional integral images. Pattern Recogn. Lett. 32(2), 197–201 (2011). https://doi.org/10.1016/j.patrec.2010.10.007

    Article  Google Scholar 

  30. Ugarriza, L.G., Saber, E., Vantaram, S.R., Amuso, V., Shaw, M., Bhaskar, R.: Automatic image segmentation by dynamic region growth and multiresolution merging. IEEE Trans. Image Process. 18(10), 2275–2288 (2009)

    Article  MathSciNet  Google Scholar 

  31. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Article  Google Scholar 

  32. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  33. Wang, X., Tang, Y., Masnou, S., Chen, L.: A global/local affinity graph for image segmentation. IEEE Trans. Image Process. 24(4), 1399–1411 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Tania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tania, S., Murshed, M., Teng, S.W., Karmakar, G. (2019). Hierarchical Colour Image Segmentation by Leveraging RGB Channels Independently. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34879-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34878-6

  • Online ISBN: 978-3-030-34879-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics