Skip to main content

Atomistic Simulations for Understanding Microscopic Mechanism of Resistive Switches

  • Conference paper
  • First Online:
Atomic Switch

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 454 Accesses

Abstract

In this chapter, we describe the results of our first-principles simulations to investigate the switching mechanism of amorphous TaOx (a-TaOx) based resistive switching devices. For the Cu/a-Ta2O5/Pt atomic switch, we first discuss the atomic structure of the conductive filaments, focusing on the exploration of possible thinnest filament structure. Then we discuss the structures of interfaces between metal electrodes and a-Ta2O5, which are important in understanding Cu ion supply for the switching. For the Pt/a-TaOx/Pt resistive switch, we discuss the nature of the conductive filaments and diffusion behaviors of active ions. Here we point out the importance of Ta-Ta bonding and the non-negligible contribution of Ta diffusion under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, J.Y., Li, L.Z., Huyan, H., Pan, X.Q., Nonnenmann, S.: Highly uniform resistive switching in HfO2 films embedded with ordered metal nanoisland arrays. Adv. Funct. Mater. 29, 1808430 (2019)

    Article  CAS  Google Scholar 

  2. Zhou, G.D., Duan, S.K., Li, P., Sun, B., Wu, B., Yao, Y.Q., Yang, X.D., Han, J.J., Wu, J.G., Wang, G., Liao, L.P., Lin, C.Y., Hu, W., Xu, C.Y., Liu, D.B., Chen, T., Chen, L.J., Zhou, A.K., Song, Q.L.: Coexistence of negative differential resistance and resistive switching memory at room temperature in TiOx modulated by moisture. Adv. Electron. Mater. 4, 1700567 (2018)

    Article  CAS  Google Scholar 

  3. Prakash, A., Jana, D., Maikap, S.: TaOx-based resistive switching memories: Prospective and challenges. Nanoscale Res. Lett. 8, 418 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lee, M.J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.B., Kim, C.J., Seo, D.H., Seo, S., Chung, U., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. Valov, L., Tsuruoka, T.: Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D. Appl. Phys. 51, 413001 (2018)

    Article  CAS  Google Scholar 

  6. Xiao, B., Gu, T.K., Tada, T., Watanabe, S.: Conduction paths in Cu/amorphous- Ta2O5/Pt atomic switch: First-principles studies. J. Appl. Phys. 115, 034503 (2014)

    Article  CAS  Google Scholar 

  7. Xiao, B., Watanabe, S.: Oxygen vacancy effects on an amorphous-TaOx-based resistance switch: A first principles study. Nanoscale. 6, 10169–10178 (2014)

    Article  PubMed  CAS  Google Scholar 

  8. Xiao, B., Watanabe, S.: Interface structure in Cu/Ta2O5/Pt resistance switch: A first-principles study. ACS Appl. Mater. Interfaces. 7, 519–525 (2015)

    Article  PubMed  CAS  Google Scholar 

  9. Xiao, B., Yu, X.F., Cheng, J.B.: Atomic insight into the origin of various operation voltages of cation-based resistance switches. ACS Appl. Mater. Interfaces. 8, 31978–31985 (2016)

    Article  PubMed  CAS  Google Scholar 

  10. Xiao, B., Yu, X.F., Watanabe, S.: A comparative study on the diffusion behaviors of metal and oxygen ions in metal-oxide-based resistance switches via ab initio molecular dynamics simulations. ACS Appl. Electron. Mater. 1, 585–549 (2019)

    Article  CAS  Google Scholar 

  11. Xiao, B., Watanabe, S.: Moisture effect on the diffusion of Cu ions in Cu/Ta2O5/Pt and Cu/SiO2/Pt resistances switches: A first-principle study. Sci. Technol. Adv. Mat. 20, 580–588 (2019). https://doi.org/10.1080/14686996.2019.1616222

    Article  Google Scholar 

  12. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  13. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996)

    Article  CAS  Google Scholar 

  14. Kresse, G., Joubert, J.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758 (1999)

    Article  CAS  Google Scholar 

  15. Wang, Y., Perdew, J.P.: Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B. 44, 13298 (1991)

    Article  CAS  Google Scholar 

  16. Brandbyge, M., Mozos, J., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65, 165401 (2002)

    Article  CAS  Google Scholar 

  17. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature. 433, 47–50 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Sawa, A.: Resistive switching in transition metal oxides. Mater. Today. 11, 28–36 (2008)

    Article  CAS  Google Scholar 

  20. Gu, T.K., Wang, Z.C., Tada, T., Watanabe, S.: First-principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt heterojunction: Electronic structures and transport properties. J. Appl. Phys. 106, 103713 (2009)

    Article  CAS  Google Scholar 

  21. Gu, T.K., Tada, T., Watanabe, S.: Conductive path formation in the Ta2O5 atomic switch: First-principles analyses. ACS Nano. 4, 6477–6482 (2010)

    Article  PubMed  CAS  Google Scholar 

  22. Kim, M.J., Seo, Y., Cruz, M.A., Wiley, B.J.: Metal nanowire felt as a flow-through electrode for high-productivity electrochemistry. ACS Nano. 13, 6998–7009 (2019). https://doi.org/10.1021/acsnano.9b02058

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez, J.C., Rodrigues, V., Bettini, J., Rego, L.G.C., Rocha, A.R., Coura, P.Z., Dantas, S.O., Sato, F., Galvao, D.S., Ugarte, D.: Indication of unusual pentagonal structures in atomic-size Cu nanowires. Phys. Rev. Lett. 93, 126103 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. Zhou, Z., Zhao, J.J., Chen, Z.F., Gao, X.P., Lu, J.P., Schleyer, P.V.R., Yang, C.K.: True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores. J. Phys. Chem. B. 110, 2529–2532 (2006)

    Article  PubMed  CAS  Google Scholar 

  25. Banno, N., Sakamoto, T., Iguchi, N., Matsumoto, M., Imai, H., Ichihashi, T., Fujieda, S., Tanaka, K., Watanabe, S., Yamaguchi, S., Hasegawa, T., Aono, M.: Structural characterization of amorphous Ta2O5 and SO2-Ta2O5used as solid electrolyte for nonvolatile switches. Appl. Phys. Lett. 97, 113507 (2010)

    Article  CAS  Google Scholar 

  26. Lee, S., Kim, J., Kim, S., Kim, S., Park, G.: Hidden structural order in orthorhombic. Phys. Rev. Lett. 110, 235502 (2013)

    Article  PubMed  CAS  Google Scholar 

  27. KC, S., Dong, H., Longo, R.C., Wang, W.C., Xiong, K., Wallace, R.M., Cho, K.: Electronic properties of InP (001)/HfO2 (001) interface: Band offsets and oxygen dependence. J. Appl. Phys. 115, 023703 (2014)

    Article  CAS  Google Scholar 

  28. Park, G.S., Kim, Y.B., Park, S.Y., Li, X.S., Heo, S., Lee, M.J., Chang, M., Kwon, J.H., Kim, M., Chung, U.I., Dittmann, R., Waser, R., Kim, K.: In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure. Nat. Commun. 4, 2382 (2013)

    Article  PubMed  CAS  Google Scholar 

  29. Miao, F., Strachan, J.P., Yang, J.J., Zhang, M.X., Goldfarb, I., Torrezan, A.C., Eschbach, P., Kelley, R.D., Medeiros-Ribeiro, G., Williams, R.S.: Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. Jagath, A.L., Kumar, T.N., Almurib, H.A. Modeling of current conduction during RESET phase of Pt/Ta2O5/TaOx/Pt bipolar resistive RAM devices. In: IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA). (2018). https://doi.org/10.1109/NVMSA.2018.00014

  31. Yang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A.A., Pickett, M.D., Li, Z., Medeiros-Ribeiro, G., Williams, R.S.: Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123–125 (2011)

    Article  CAS  Google Scholar 

  32. Yang, J.J., Strachan, J.P., Miao, F., Zhang, M.X., Pickett, M., Yi, W., Ohlberg, D., Medeiros-Ribeiro, G., Williams, R.: Metal/TiO2 interfaces for memristive switches. Appl. Phys. A Mater. Sci. Process. 102, 785–789 (2011)

    Article  CAS  Google Scholar 

  33. Xu, N., Gao, B., Liu, L.F., Sun, B., Liu, X.Y., Han, R.Q., Kang, J.F., Yu, B.: A unified physical model of switching behavior in oxide-based RRAM. Symposium on VLSI Technology Digest of technical papers, pp. 100–101 (2008)

    Google Scholar 

  34. Hur, J.H., Lee, M.J., Lee, C.B., Kim, Y.B., Kim, C.J.: Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B. 82, 155321 (2010)

    Article  CAS  Google Scholar 

  35. Wei, Z., Takagi, T., Kanzawa, Y., Katoh, Y., Ninomiya, T., Kawai, K., Muraoka, S., Mitani, S., Katayama, K., Fujii, S., Miyanaga, R., Kawashima, Y., Mikawa, T., Shimakawa, K., Aono, K.: Demonstration of high-DENSITY ReRAM ensuring 10-year retention at 85°C. Based on a newly developed reliability model. IEDM11–721, 31.4.1–31.1.4 (2011)

    Google Scholar 

  36. Choi, S., Yang, Y.C., Lu, W.: Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale. 7, 400–404 (2014)

    Article  Google Scholar 

  37. Yang, J.J., Zhang, M.X., Strachan, J.P., Miao, F., Pickett, M.D., Kelley, R.D., Medeiros-Ribeiro, G., Williams, R.S.: High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)

    Article  CAS  Google Scholar 

  38. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207 (2003)

    Article  CAS  Google Scholar 

  39. Lau, W.S., Leong, L.L., Han, T., Sandler, N.P.: Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy. Appl. Phys. Lett. 83, 2835 (2003)

    Article  CAS  Google Scholar 

  40. Ivanov, M.V., Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Kaichev, V.V.: Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum. J. Appl. Phys. 110, 024115 (2011)

    Article  CAS  Google Scholar 

  41. Lau, W.S.: Engineering implication of the correlation between the leakage current in high-k dielectric materials and the electronic defect states detected by zero-bias thermally simulated current spectroscopy. China Semiconductor Technology International Conference (CSTIC). (2018). https://doi.org/10.1109/CSTIC.2018.8369248

  42. Garg, S.P., Krishnamurthy, N., Awasthi, A., Venkatraman, M.: The O-Ta (oxygen-tantalum) system. J. Phase Equilib. 17, 63–77 (1996)

    Article  CAS  Google Scholar 

  43. Alderman, O.L.G., Benmore, C.J., Neuefeind, J., Coillet, E., Mermet, A., Martinez, V., Tamalonis, A., Weber, R.: Amorphous tantala and its relationship with the molten state. Phys. Rev. Mater. 2, 043602 (2018)

    Article  CAS  Google Scholar 

  44. Jiang, A.Q., Tyson, T.A., Axe, L.: The structure of small Ta clusters. J. Phys. Condens. Matter. 17, 1841 (2005)

    Article  CAS  Google Scholar 

  45. Park, T.H., Kwon, Y.J., Kim, H.J., Woo, H.C., Kim, G.S., An, C.H., Kim, C.H., Kwon, D.E., Hwang, C.S.: Balancing the source and sink of oxygen vacancies for the resistive switching memory. ACS Appl. Mater. Interfaces. 10, 21445–21450 (2018)

    Article  PubMed  CAS  Google Scholar 

  46. Wedig, A., Luebben, M., Cho, D.Y., Moors, M., Skaja, K., Rana, V., Hasegawa, T., Adepalli, K.K., Yildiz, B., Waser, R., Valov, L.: Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Davies, J.A., Domeij, B., Pringle, J.P.S., Brown, F.: The migration of metal and oxygen during anodic film formation. J. Electrochem. Soc. 112, 675–680 (1965)

    Article  CAS  Google Scholar 

  48. Khalil, N., Leach, J.S.L.: The anodic oxidation of valve metals—I. determination of ionic transport numbers by a-spectrometry. Electrochim. Acta. 31, 1279–1285 (1986)

    Article  CAS  Google Scholar 

  49. Chandrasekharan, R., Park, I., Masel, R.I., Shannon, M.A.: Thermal oxidation of tantalum films at various oxidation states from 300 to 700°C. J. Appl. Phys. 98, 114908 (2005)

    Article  CAS  Google Scholar 

  50. Oshima, M., Toyoda, S., Horiba, K., Yasuhara, R., Kumigashira, H.: Synchrotron radiation nano-spectroscopy of dielectrics for LSI and ReRAM. ECS Trans. 41, 453 (2011)

    Article  CAS  Google Scholar 

  51. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  PubMed  CAS  Google Scholar 

  52. Yalon, E., Gavrilov, A., Cohen, S., Ritter, D.: Validation and extension of local temperature evaluation of conductive filaments in RRAM devices. IEEE Trans. Electron Devices. 62, 3671–3677 (2015)

    Article  Google Scholar 

  53. Sharma, A.A., Noman, M., Abdelmoula, M., Skowronski, M., Bain, J.A.: Electronic instabilities leading to electroformation of binary metal oxide-based resistive switches. Adv. Funct. Mater. 24, 5522–5529 (2014)

    Article  CAS  Google Scholar 

  54. Li, W., Ando, Y., Watanabe, S.: Cu diffusion in amorphous Ta2O5 studied with a simplified neural network potential. J. Phys. Soc. Jpn. 86, 104004 (2017)

    Article  Google Scholar 

  55. Li, W., Ando, Y., Minamitani, E., Watanabe, S.: Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. J. Chem. Phys. 147, 214106 (2017)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Tinkun Gu, Prof. Tomofumi Tada for collaboration in the early stage of the present work. SW also thanks Prof. Shu Yamaguchi, Prof. Tsuyoshi Hasegawa, Dr. Tohru Tsuruoka, Dr Toshi Sakamoto and Dr Naoki Banno for fruitful discussion. This work was partially supported by CREST-JST “Atom transistor”, Low Power Electronics Association and Projects, the grant-in-aid for Innovation Area “Computics” by MEXT, Japan, and Global COE program “Global COE for Mechanical Systems Innovation” by MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Watanabe, S., Xiao, B. (2020). Atomistic Simulations for Understanding Microscopic Mechanism of Resistive Switches. In: Aono, M. (eds) Atomic Switch. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-030-34875-5_6

Download citation

Publish with us

Policies and ethics