Skip to main content

Atomic Switch Networks for Neuroarchitectonics: Past, Present, Future

  • Conference paper
  • First Online:
Atomic Switch

Abstract

Artificial realizations of the mammalian brain alongside their integration into electronic components are explored through neuromorphic architectures, neuroarchitectectonics, on CMOS compatible platforms. Exploration of neuromorphic technologies continue to develop as an alternative computational paradigm as both capacity and capability reach their fundamental limits with the end of the transistor-driven industrial phenomenon of Moore’s law. Here, we consider the electronic landscape within neuromorphic technologies and the role of the atomic switch as a model device. We report the fabrication of an atomic switch network (ASN) showing critical dynamics and harness criticality to perform benchmark signal classification and Boolean logic tasks. Observed evidence of biomimetic behavior such as synaptic plasticity and fading memory enable the ASN to attain a cognitive capability within the context of artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldrop, M.M.: The chips are down for Moore’s law. Nature. 530, 144–147 (2016)

    Article  PubMed  CAS  Google Scholar 

  2. Abbe, E.: Contributions to the Theory of the Microscope and the Microscopic Perception. Springer (1873)

    Google Scholar 

  3. International Technology Roadmap for Semiconductors (2015)

    Google Scholar 

  4. Neumann, J.V.: First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993)

    Article  Google Scholar 

  5. Backus, J.W.: Can programming be liberated from the von Neumann style? A functional style and its algebra of programs. Comm. ACM. 21, 613–641 (1978)

    Article  Google Scholar 

  6. Dongarra, J.: Visit to the National University for Defense Technology Changsha, China. University of Tennessee (2013)

    Google Scholar 

  7. Mead, C.: Neuromorphic electronic systems. In: Proceedings of the IEEE. IEEE (1990)

    Google Scholar 

  8. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R.: Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110(17), 178101 (2013)

    Article  PubMed  CAS  Google Scholar 

  10. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag. 3, 6–20 (2003)

    Article  Google Scholar 

  11. Sporns, O.: Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems. 85, 55–64 (2006)

    Article  PubMed  Google Scholar 

  12. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178 (2000)

    Article  PubMed  CAS  Google Scholar 

  13. Hebb, D.O.: Organization of Behavior. Wiley, New York (1950)

    Google Scholar 

  14. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  PubMed  CAS  Google Scholar 

  15. Hopfield, J.J.: Artificial neural networks. IEEE Circ. Dev. Mag. 4, 3–10 (1988)

    Article  Google Scholar 

  16. Gomes, L.: Neuromorphic chips are destined for deep learning—or obscurity. IEEE Spectrum (2017)

    Google Scholar 

  17. Schuman, C.D., Potok, T.E., Patton, R.M., Douglas Birdwell, J., Dean, M.E., Rose, G.S., Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware. arXiv (2017)

    Google Scholar 

  18. Christie, P., Stroobandt, D.: The interpretation and application of Rent’s rule. IEEE Trans. VLSI Syst. 8, 639–648 (2000)

    Article  Google Scholar 

  19. Abraham, A.: Artificial neural networks. In: Sydenham, P.H., Thorn, R. (eds.) Handbook of Measuring System Design. Wiley, New York (2005)

    Google Scholar 

  20. Medsker, L., Jain, L.C.: Recurrent Neural Networks: Design and Applications. CRC, Boca Raton, FL (2001)

    Google Scholar 

  21. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. ArXiv (2013)

    Google Scholar 

  22. Khotanzad, A., Chung, C.: Application of multi-layer perceptron neural networks to vision problems. Neural Comput. Appl. 7, 249–259 (1998)

    Article  Google Scholar 

  23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521, 436–444 (2015)

    Article  PubMed  CAS  Google Scholar 

  24. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Touretsky, D.S. (ed.) Advances in Neural Information Processing Systems. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  25. Hinton, G.E.: Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)

    Article  PubMed  Google Scholar 

  26. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput. 22, 1272–1311 (2010)

    Article  PubMed  Google Scholar 

  27. Sojakka, C. F.: Pattern recognition in a bucket. In: Wolfgang Banzhaf, J. Z. (ed.) European Conference on Artificial Life: Advances in Artificial Life (2003)

    Google Scholar 

  28. Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108, 128702 (2012)

    Article  PubMed  CAS  Google Scholar 

  29. Tour, J.M., Cheng, L., Nackashi, D.P., Yao, Y., Flatt, A.K., Angelo, S.K.S., Mallouk, T.E., Franzon, P.D.: Nanocell electronic memories. J. Am. Chem. Soc. 125, 13279–13283 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 345, 668–673 (2014)

    Article  PubMed  CAS  Google Scholar 

  31. Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011)

    Google Scholar 

  32. Shimokawa, Y., Fuwa, Y., Aramaki N. A parallel ASIC VLSI neurocomputer for a large number of neurons and billion connections per second speed. In: IEEE International Joint Conference on Neural Networks. Singapore (1991)

    Google Scholar 

  33. Omondi, A.R., Rajapakse, J.C.: FPGA Implementations of Neural Networks. Springer, Dordrecht (2006)

    Book  Google Scholar 

  34. Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., Marr, D. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: International Conference on Field-Programmable Technology (FPT), IEEE (2016)

    Google Scholar 

  35. Qiao, Y., Shen, J., Xiao, T., Yang, Q., Wen, M., Zhang, C.: FPGA-accelerated deep convolutional neural networks for high throughput and energy efficiency. Concurr. Comput. Pract. Exp. 29 (2016)

    Article  Google Scholar 

  36. NVIDIA launches the world’s first graphics processing unit: GeForce 256 [Online]. http://www.nvidia.com/object/IO_20020111_5424.html (1999)

  37. Jager, C.: Nvidia unveils Volta: the most powerful GPU ever [online]. https://www.lifehacker.com.au/2017/05/nvidias-unveils-volta-gv100-the-most-powerful-gpu-ever/ (2017)

  38. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  39. Saxena, A.: Deep learning pioneers boost research at NVIDIA AI labs around the world [online]. https://blogs.nvidia.com/blog/2017/07/11/deep-learning-pioneers-boost-research-at-nvidia-ai-labs-around-the-world/ (2017)

  40. Romero, A., et al.: Diet networks: thin parameters for fat genomics. ArXiv (2017)

    Google Scholar 

  41. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. ArXiv (2017)

    Google Scholar 

  42. Meier, K.: The FACETS project. Available https://facets.kip.uni-heidelberg.de/images/4/48/Public%2D%2DFACETS_15879_Summary-flyer.pdf (2010)

  43. Qualcomm helps make your mobile devices smarter with new Snapdragon machine learning software development kit. https://www.qualcomm.com/news/releases/2016/05/02/qualcomm-helps-make-your-mobile-devices-smarter-new-snapdragon-machine (2016)

  44. Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Shieh, H.H., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Neuromorphic atomic switch networks. PLoS One. 7(8), e42772 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  PubMed  CAS  Google Scholar 

  46. Stieg, A.Z., et al.: Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks. In: Adamatzky, A., Chua, L. (eds.) Memristor Networks. Springer, Cham (2014)

    Google Scholar 

  47. Demis, E.C., Aguilera, R., Sillin, H.O., Scharnhorst, K., Sandouk, E.J., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Atomic switch networks nanoarchitectonic design of a complex system for natural computing. Nanotechnology. 26, 204003 (2015)

    Article  PubMed  CAS  Google Scholar 

  48. Demis, E.C., Aguilera, R., Scharnhorst, K., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Nanoarchitectonic atomic switch networks for unconventional computing. Jpn. J. Appl. Phys. 55, 1102B2 (2016)

    Article  CAS  Google Scholar 

  49. Sillin, H.O., Aguilera, R., Shieh, H.H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology. 24, 384004 (2013)

    Article  PubMed  CAS  Google Scholar 

  50. Scharnhorst, K.S., Carbajal, J.P., Aguilera, R.C., Sandouk, E.J., Aono, M., Stieg, A.Z., Gimzewski, J.K.: Atomic switch networks as complex adaptive systems. Jpn. J. Appl. Phys. 57, 03ED02 (2018)

    Article  Google Scholar 

  51. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D. 42, 12–37 (1990)

    Article  Google Scholar 

  52. Gimzewski, J.K., Möller, R.: Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys. Rev. B. 36(2), 1284–1287 (1987)

    Article  CAS  Google Scholar 

  53. Lang, N.D.: Theory of single-atom imaging in the scanning tunneling microscope. Phys. Rev. Lett. 56, 1164–1167 (1986)

    Article  PubMed  CAS  Google Scholar 

  54. van Houton, H., Beenakker, C.: Quantum point contacts. Phys. Today. 49(7), 22–27 (1996)

    Article  Google Scholar 

  55. Terabe, K., Nakayama, T., Hasegawa, T., Aono, M.: Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110–10114 (2002)

    Article  CAS  Google Scholar 

  56. NEC. NEC integrates nanobridge in the Cu interconnects of Si LSI. https://phys.org/news/2009-12-nec-nanobridge-cu-interconnects-si.html (2009)

  57. Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)

    Article  PubMed  CAS  Google Scholar 

  58. Hasegawa, T., Nayak, A., Ohno, T., Terabe, K., Tsuruoka, T., Gimzewski, J.K., Aono, M.: Memristive operations demonstrated by gap-type atomic switches. Appl. Phys. A. 102, 811–815 (2011)

    Article  CAS  Google Scholar 

  59. Avizienis, A.V., Martin-Olmos, C., Sillin, H.O., Aono, M., Gimzewski, J.K., Stieg, A.Z.: Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Cryst. Growth Des. 13(2), 465–469 (2013)

    Article  CAS  Google Scholar 

  60. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J.K.: Emergent criticality in complex turing B-type atomic switch networks. Adv. Mater. 24, 286–293 (2011)

    Article  CAS  Google Scholar 

  61. Oskoee, E.N., Sahimi, M.: Electric currents in networks of interconnected memristors. Phys. Rev. E. 83, 031105 (2011)

    Article  CAS  Google Scholar 

  62. Goudarzi, A., Lakin, M.R., Stefanovic, D., Teuscher, C.: A model for variation-and fault-tolerant digital logic using self-assembled nanowire architectures. In: IEEE/ACM International Symposium on Nanoscale Architectures. ACM, pp. 116–121 (2014)

    Google Scholar 

  63. Verstraeten, D.: Reservoir computing: computation with dynamical systems. PhD thesis, Ghent University (2009)

    Google Scholar 

  64. Legenstein, R., Maass, W.: What makes a dynamical system computationally powerful? In: Haykin, S., Principe, J.C., Sejnowski, T.J., McWhirter, J. (eds.) New Directions in Statistical Signal Processing: From Systems to Brain. MIT Press, Cambridge, MA (2005)

    Google Scholar 

  65. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009)

    Article  Google Scholar 

  66. Wyffels, F., Schrauwen, B.: A comparative study of reservoir computing strategies for monthly time series prediction. Neurocomputing. 73, 1958–1964 (2010)

    Article  Google Scholar 

  67. Castro, L.N.D.: Fundamentals of natural computing: an overview. Phys. Life Rev. 4, 1–36 (2007)

    Article  Google Scholar 

  68. Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A., Singh, R.: Cognitive computing. Commun. ACM. 54, 62–71 (2011)

    Article  Google Scholar 

  69. Yu, S., Kuzum, K., Philip Wong, H. S.: Design considerations of synaptic device for neuromorphic computing. In: IEEE International Symposium on Circuits and Systems, Melbourne, VIC. IEEE, pp 1062–1065 (2014)

    Google Scholar 

  70. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

    Google Scholar 

  71. Bürger, J., Goudarzi, A., Stefanovic, D., Teuscher, C.: Hierarchical composition of memristive networks for real-time computing. In: IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE (2015)

    Google Scholar 

  72. Gacem, K., Retrouvey, J.M., Chabi, D., Filoramo, A., Zhao, W., Klein, J.O., Derycke, V.: Neuromorphic function learning with carbon nanotube based synapses. Nanotechnology. 24, 384013 (2013)

    Article  PubMed  CAS  Google Scholar 

  73. Snyder, D., Goudarzi, A., Teuscher, C.: Computational capabilities of random automata networks for reservoir computing. Phys. Rev. E. 87, 042808 (2013)

    Article  CAS  Google Scholar 

  74. Carbajal, J.P., Dambre, J., Hermans, M., Schrauwen, B.: Memristor models for machine learning. Neural Comput. 27, 725–747 (2015)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Gimzewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilera, R. et al. (2020). Atomic Switch Networks for Neuroarchitectonics: Past, Present, Future. In: Aono, M. (eds) Atomic Switch. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-030-34875-5_11

Download citation

Publish with us

Policies and ethics