Skip to main content

A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation

  • Conference paper
  • First Online:
Complex Systems Design & Management (CSDM 2019)

Abstract

Understanding and quantifying the performance of sensing architectures on autonomous vehicles is a necessary step towards certification. However, once this evaluation can be performed, the combinatorial number of potential sensors on the vehicle limits the efficiency of a design tradespace exploration. Several figures of merit emerge when choosing a sensor suite; its performance for a specific autonomy task, its monetary cost, energy consumption, and contribution to the latency of the entire system. In this paper, we present formulations to evaluate a sensor combination across these dimensions for the localization and mapping task, as well as a method to enumerate architectures around the Pareto Front efficiently. We find that, on a benchmarked environment for this task, combinations with LiDARs are situated on the Pareto Front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koopman, P., Wagner, M.: IEEE Intell. Transp. Syst. Mag. 9(1), 90 (2017). https://doi.org/10.1109/MITS.2016.2583491

    Article  Google Scholar 

  2. Crawley, E., Weck, O.D., Eppinger, S., Magee, C., Moses, J., Seering, W.: MIT Engineering Systems Symposium, Cambridge, p. 30 (2004). http://esd.mit.edu/symposium/pdfs/monograph/uncertainty.pdf

  3. Selva, D., Cameron, B., Crawley, E.: Syst. Eng. 19(6), 477 (2016). https://doi.org/10.1002/sys.21370. http://doi.wiley.com/10.1002/sys.21370

    Article  Google Scholar 

  4. Zheng, B., Liang, H., Zhu, Q., Yu, H., Lin, C.W.: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), vol. 2016, pp. 53–58. IEEE, September 2016. https://doi.org/10.1109/ISVLSI.2016.126. http://ieeexplore.ieee.org/document/7560172/

  5. Meng, H., Zhang, W.B.: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 317–321. IEEE (2017). https://doi.org/10.1109/IVS.2017.7995738, http://ieeexplore.ieee.org/document/7995738/

  6. Collin, A., Teran Espinoza, A.: 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES) (ICVES 2018), Madrid, Spain (2018)

    Google Scholar 

  7. Ross, A.M., Hastings, D.E.: INCOSE International Symposium, vol. 15, no. 1, p. 1706 (2005). https://doi.org/10.1002/j.2334-5837.2005.tb00783.x. http://doi.wiley.com/10.1002/j.2334-5837.2005.tb00783.x

    Article  Google Scholar 

  8. Durrant-Whyte, H., Bailey, T.: IEEE Robot. Autom. Mag. 13(2), 99 (2006). https://doi.org/10.1109/MRA.2006.1638022. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1638022

    Article  Google Scholar 

  9. Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Member, S.: IEEE Trans. Intell. Transp. Syst. 16(6), 3377 (2015). https://doi.org/10.1109/TITS.2015.2450738

    Article  Google Scholar 

  10. Zhao, Y., Vela, P.A.: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1183–1189. IEEE (2018). https://doi.org/10.1109/IROS.2018.8593641. https://ieeexplore.ieee.org/document/8593641/

  11. Chaloner, K., Verdinelli, I.: Stat. Sci. 10(3), 273 (1995). https://doi.org/10.1214/ss/1177009939. http://projecteuclid.org/euclid.ss/1177009939

    Article  Google Scholar 

  12. Collin, A., Teran Espinoza, A.: arXiv preprint arXiv:1907.08541 (2019). https://doi.org/10.13140/RG.2.2.11386.24001

  13. Collin, A., Siddiqi, A., Yuto, I., Rebentisch, E., Tanimichi, T., De Weck, O.L.: Submitted (2018)

    Google Scholar 

  14. Imanishi, Y., Collin, A., Siddiqi, A., Rebentisch, E., Tanimichi, T., Matta, Y.: SAE International, pp. 1–12 (2019). https://doi.org/10.4271/2019-01-0473. https://www.sae.org/content/2019-01-0473/

  15. Chamov, I., Ranieri, J., Vetterli, M., de Weck, O.L.: 2016 IEEE Aerospace Conference, pp. 1–8. IEEE (2016). https://doi.org/10.1109/AERO.2016.7500713. http://ieeexplore.ieee.org/document/7500713/

  16. Joshi, S., Boyd, S.: IEEE Trans. Signal Process. 57(2), 451 (2009). https://doi.org/10.1109/TSP.2008.2007095. http://ieeexplore.ieee.org/document/4663892/

    Article  MathSciNet  Google Scholar 

  17. Carlone, L., Karaman, S.: Attention and anticipation in fast visual-inertial navigation (2018)

    Google Scholar 

  18. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: J. Water Resour. Plan. Manag. 134(6), 516 (2008). https://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(516). http://ascelibrary.org/doi/10.1061/

    Article  Google Scholar 

  19. Bosch: Mid-range Radar Sensor (MRR) (2019). https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/predictive-emergency-braking-system/mid-range-radar-sensor-(mrr)/

  20. Continental, ARS 408-21 Premium Long Range Radar Sensor 77 GHz. Technical report (2017)

    Google Scholar 

  21. Glennie, C., Lichti, D.D.: Remote Sens. 2(6), 1610 (2010). https://doi.org/10.3390/rs2061610. http://www.mdpi.com/2072-4292/2/6/1610

    Article  Google Scholar 

  22. Velodyne: Velodyne LiDAR - Puck (2019). https://velodynelidar.com/vlp-16.html

  23. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  24. StereoLabs: What is the camera focal length and field of view? (2019). https://support.stereolabs.com/hc/en-us/articles/360007395634-What-is-the-camera-focal-length-and-field-of-view-25

  25. Carrillo, H., Reid, I., Castellanos, J.A.: IEEE International Conference on Robotics and Automation, pp. 2080–2087 (2012). https://doi.org/10.1109/ICRA.2012.6224890

  26. Chiu, H.P., Zhou, X.S., Carlone, L., Dellaert, F., Samarasekera, S., Kumar, R.: Proceedings - IEEE International Conference on Robotics and Automation, pp. 663–670 (2014). https://doi.org/10.1109/ICRA.2014.6906925

  27. Dellaert, F., Kaess, M.: Found. Trends Robot. 6(1–2), 1 (2017). https://doi.org/10.1561/2300000043. http://www.nowpublishers.com/article/Details/ROB-043

    Article  Google Scholar 

  28. Lin, S.C., Zhang, Y., Hsu, C.H., Skach, M., Haque, M.E., Tang, L., Mars, J.: Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS 2018, pp. 751–766 (2018). https://doi.org/10.1145/3173162.3173191. http://dl.acm.org/citation.cfm?doid=3173162.3173191

  29. Tzoumas, V., Jadbabaie, A., Pappas, G.J.: 2016 American Control Conference (ACC), vol. 2016, pp. 191–196. IEEE, July 2016. https://doi.org/10.1109/ACC.2016.7524914. http://ieeexplore.ieee.org/document/7524914/

  30. Nemhauser, G.L., Wolsey, L.A., Nemhausert, G.L.: Source Math. Oper. Res. 3(3), 177 (1978). https://doi.org/10.1287/moor.3.3.177. http://www.jstor.org/stable/3689488

    Article  Google Scholar 

  31. Williams, B.C., Ragno, R.J.: Discrete Appl. Math. 155(12), 1562 (2007). https://doi.org/10.1016/j.dam.2005.10.022. https://linkinghub.elsevier.com/retrieve/pii/S0166218X06004628

    Article  MathSciNet  Google Scholar 

  32. Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511626418. http://ebooks.cambridge.org/ref/id/CBO9780511626418

    Book  MATH  Google Scholar 

  33. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2007, p. 420. ACM Press, New York (2007). https://doi.org/10.1145/1281192.1281239. http://portal.acm.org/citation.cfm?doid=1281192.1281239

Download references

Acknowledgements

The authors would like to thank Antonio Terán Espinoza, Dr. Vasileios Tzoumas, and Professor Luca Carlone, from MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Collin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collin, A., Siddiqi, A., Imanishi, Y., Matta, Y., Tanimichi, T., de Weck, O. (2020). A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation. In: Boy, G., Guegan, A., Krob, D., Vion, V. (eds) Complex Systems Design & Management. CSDM 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-34843-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34843-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34842-7

  • Online ISBN: 978-3-030-34843-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics