Skip to main content

Capacitive Body-Coupled Communication in the 400–500 MHz Frequency Band

  • Conference paper
  • First Online:

Abstract

One approach to enable wireless communication between body-worn nodes is to use capacitive body-coupled communication (C-BCC). This technique, which uses capacitive electrodes as transducing elements, has previously been demonstrated at relatively low frequencies (<200 MHz) and hence also low bandwidths. This work presents a theoretical analysis of wireless C-BCC, between body worn electrodes at higher frequencies (420–510 MHz), offering the potential for higher data rates. The theory is confirmed both by numerical simulations (performed on a human body phantom), and actual wireless communication between two prototypes on the arm of a real human.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, G.S., Sodini, C.G.: Body coupled communication: the channel and implantable sensors. In: 2013 IEEE International Conference on Body Sensor Networks, pp. 1–5. IEEE (2013)

    Google Scholar 

  2. Arenas, G.M., Gordillo, A.C.: Design and implementation of a body coupled communication system for streaming music. In: 2016 IEEE ANDESCON, pp. 1–4. IEEE (2016)

    Google Scholar 

  3. Bae, J., Cho, H., Song, K., Lee, H., Yoo, H.J.: The signal transmission mechanism on the surface of human body for body channel communication. IEEE Trans. Microw. Theory Tech. 60(3), 582–593 (2012)

    Article  Google Scholar 

  4. Chang, T.C., Weber, M.J., Charthad, J., Baltsavias, S., Arbabian, A.: Scaling of ultrasound-powered receivers for sub-millimeter wireless implants. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

  5. Cho, N., Yoo, J., Song, S.J., Lee, J., Jeon, S., Yoo, H.J.: The human body characteristics as a signal transmission medium for intrabody communication. IEEE Trans. Microw. Theory Tech. 55(5), 1080–1086 (2007)

    Article  Google Scholar 

  6. Cotton, S.L., D’Errico, R., Oestges, C.: A review of radio channel models for body centric communications. Radio Sci. 49(6), 371–388 (2014)

    Article  Google Scholar 

  7. Das, D., Maity, S., Chatterjee, B., Sen, S.: Enabling covert body area network using electro-quasistatic human body communication. Sci. Rep. 9(1), 4160 (2019)

    Article  Google Scholar 

  8. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011)

    Article  Google Scholar 

  9. Fort, A., Keshmiri, F., Crusats, G.R., Craeye, C., Oestges, C.: A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements. IEEE Trans. Antennas Propag. 58(2), 503–514 (2009)

    Article  MathSciNet  Google Scholar 

  10. Gabriel, S., Lau, R., Gabriel, C.: The dielectric properties of biological tissues: III. pParametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)

    Article  Google Scholar 

  11. IEEE, P802.15 Working Group for Wireless Personal Area Networks (WPANs): Channel Model for Body Area Network (BAN), IEEE P802.15-08-0780-09-0006 (2009)

    Google Scholar 

  12. Katayama, N., Takizawa, K., Aoyagi, T., Takada, J.I., Li, H.B., Kohno, R.: Channel model on various frequency bands for wearable body area network. IEICE Trans. Commun. 92(2), 418–424 (2009)

    Article  Google Scholar 

  13. Mao, J., Yang, H., Zhao, B.: An investigation on ground electrodes of capacitive coupling human body communication. IEEE Trans. Biomed. Circuits Syst. 11(4), 910–919 (2017)

    Article  Google Scholar 

  14. Mazloum, N.S.: Body-Coupled Communications: Experimental Characterization, Channel Modelling and Physical Layer Design. Chalmers University of Technology (2008)

    Google Scholar 

  15. Norton, K.: The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. Inst. Radio Eng. 24(10), 1367–1387 (1936)

    Google Scholar 

  16. Norton, K.A.: The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. Inst. Radio Eng. 25(9), 1203–1236 (1937)

    Google Scholar 

  17. Pereira, M.D., Alvarez-Botero, G.A., de Sousa, F.R.: Characterization and modeling of the capacitive HBC channel. IEEE Trans. Instrum. Meas. 64(10), 2626–2635 (2015)

    Article  Google Scholar 

  18. Petrillo, L., Mavridis, T., Sarrazin, J., Dricot, J.M., Benlarbi-Delai, A., De Doncker, P.: Ban working frequency: a trade-off between antenna efficiency and propagation losses. In: The 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 3368–3369. IEEE (2014)

    Google Scholar 

  19. Rabaey, J.M.: The human intranet-where swarms and humans meet. IEEE Pervasive Comput. 14(1), 78–83 (2015)

    Article  Google Scholar 

  20. Thielens, A., et al.: A comparative study of on-body radio-frequency links in the 420 MHZ-2.4 GHZ range. Sensors 18(12), 4165 (2018)

    Article  Google Scholar 

  21. Mouser website: Covidien. Kendall ECG electrodes product data sheet. https://www.mouser.com/datasheet/2/813/H124SG-1022817.pdf. Accessed 29 May 2019

  22. ST Microelectronics website: Sub-GHZ (430–470 MHz) transceiver development kit based on S2-LP. https://www.st.com/resource/en/data_brief/steval-fki433v2.pdf. Accessed 14 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Benarrouch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benarrouch, R., Thielens, A., Cathelin, A., Frappé, A., Kaiser, A., Rabaey, J. (2019). Capacitive Body-Coupled Communication in the 400–500 MHz Frequency Band. In: Mucchi, L., Hämäläinen, M., Jayousi, S., Morosi, S. (eds) Body Area Networks: Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-34833-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34833-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34832-8

  • Online ISBN: 978-3-030-34833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics