Skip to main content

A Novel Galvanic Coupling Testbed Based on PC Sound Card for Intra-body Communication Links

  • Conference paper
  • First Online:
Body Area Networks: Smart IoT and Big Data for Intelligent Health Management (BODYNETS 2019)

Abstract

Intra-Body Communication (IBC) is an emerging research area that will transform the personalized medicine by allowing real time and in situ monitoring in daily life. A galvanic coupling (GC) technology is used in this work to send data through weak currents for intra-body links, as an energy efficient alternative to the current radio frequency (RF) solutions. A sound card based GC testbed is here designed and implemented, whose main features are: (i) low equipment requirements since it only employs two ordinary PCs and Matlab software, (ii) high flexibility because all the parameters setting may be modified through Matlab programs, and (iii) real time physiological data set transmissions. Experimental evaluation with a real chicken tissue are conducted in terms of bit error rate (BER) proving the feasibility of the proposed solution. The developed GC testbed may be easily replicated by the interested research community to carry out simulation-based experiments, thus fostering new research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seyedi, M., Kibret, B., Lai, D.T.H., Faulkner, M.: A survey on intrabody communications for body area network applications. IEEE Trans. Biomed. Eng. 60(8), 2067–2079 (2013)

    Article  Google Scholar 

  2. Galluccio, L., Melodia, T., Palazzo, S., Santagati, G.E.: Challenges and implications of using ultrasonic communications in intra-body area networks. In: Proceedings of IEEE Wireless On-demand Network Systems and Services, Courmayeur, Italy, January 2012

    Google Scholar 

  3. Park, J., Mercier, P.P.: Magnetic human body communication. In: EMBS, 2015 37th Annual International Conference of the IEEE, pp. 1841–1844, 25–29 August 2015

    Google Scholar 

  4. Callejn, M.A., Reina-Tosina, J., Naranjo-Hernndez, D., Roa, L.M.: Galvanic coupling transmission in intrabody communication: a finite element approach. IEEE Trans. Biomed. Eng. 61(3), 775–783 (2014)

    Article  Google Scholar 

  5. Swaminathan, M., Cabrera, F.S., Pujol, J.S., Muncuk, U., Schirner, G., Chowdhury, K.R.: Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue. IEEE Trans. Biomed. Circ. Syst. 10(2), 339–351 (2016)

    Article  Google Scholar 

  6. Swaminathan, M., Vizziello, A., Duong, D., Savazzi, P., Chowdhury, K.R.: Beamforming in the body: energy-efficient and collision-free communication for implants. In: IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, Atlanta, GA, pp. 1–9 (2017)

    Google Scholar 

  7. Wegmueller, M.S., et al.: Galvanic coupling enabling wireless implant communications. IEEE Trans. Instrum. Meas. 58(8), 2618–2625 (2009)

    Article  Google Scholar 

  8. Wegmueller, M.S., Oberle, M., Felber, N., Kuster, N., Fichtner, W.: Signal transmission by galvanic coupling through the human body. IEEE Trans. Instrum. Meas. 59(4), 963–969 (2010)

    Article  Google Scholar 

  9. Seyedi, M.H., Lai, D.T.H.: A Novel Intrabody Communication Transceiver for Biomedical Applications. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-2824-3

    Book  Google Scholar 

  10. Tomlinson, W.J., Chowdhury, K.R., Yu, C.: Galvanic coupling intra-body communication link for real-time channel assessment. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 968–969 (2016)

    Google Scholar 

  11. Hwang, J.: Innovative communication design lab based on PC sound card and Matlab: a software-defined-radio OFDM modem example. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, (ICASSP 2003), Hong Kong, pp. III–761 (2003)

    Google Scholar 

  12. Banou, S., et al.: Beamforming galvanic coupling signals for IoMT implant-to-relay communication. IEEE Sens. J. 19(19), 8487–8501 (2019). https://doi.org/10.1109/JSEN.2018.2886561

    Article  Google Scholar 

  13. Tomlinson, W.J., Banou, S., Yu, C., Stojanovic, M., Chowdhury, K.R.: Comprehensive survey of galvanic coupling and alternative intra-body communication technologies. IEEE Commun. Surv. Tutor. 21(2), 1145–1164 (2019). Secondquarter

    Article  Google Scholar 

  14. Li, M., et al.: The modeling and simulation of the galvanic coupling intra-body communication via handshake channel. Sensors 17(4), 863 (2017)

    Article  Google Scholar 

  15. Wegmueller, M.S., et al.: An attempt to model the human body as a communication channel. IEEE Trans. Biomed. Eng. 54(10), 1851–1857 (2007)

    Article  Google Scholar 

  16. Song, Y., Zhang, K., Hao, Q., Hu, L., Wang, J., Shang, F.: A finite-element simulation of galvanic coupling intra-body communication based on the whole human body. Sensors 12, 13567–13582 (2012)

    Article  Google Scholar 

  17. Chen, X.M., et al.: Signal transmission through human muscle for implantable medical devices using galvanic intra-body communication technique. In: Proceedings IEEE International Conference Engineering in Medicine and Biology Society, pp. 1651–1654 (2012)

    Google Scholar 

  18. Pun, S.H., et al.: Quasi-static modeling of human limb for intra-body communications with experiments. IEEE Trans. Inf. Tech. Biomed. 15(6), 870–876 (2011)

    Article  Google Scholar 

  19. Oberle, M.: Low power systems-on-chip for biomedical applications. Ph.D. dissertation, ETH Zurich, Switzerland (2002)

    Google Scholar 

  20. Cho, N., Bae, J., Yoo, H.-J.: A 10.8 mW body channel communication/MICS dual-band transceiver for a unified body sensor network controller. IEEE J. Solid-State Circ. 44(12), 3459–3468 (2009)

    Article  Google Scholar 

  21. Callejn, M.A., Reina-Tosina, J., Naranjo-Hernndez, D., Roa, L.M.: Measurement issues in galvanic intrabody communication: influence of experimental setup. IEEE Trans. Biomed. Eng. 62(11), 2724–2732 (2015)

    Article  Google Scholar 

  22. Alesii, R., Marco, P.D., Santucci, F., Savazzi, P., Valentini, R., Vizziello, A.: Multi-reader multi-tag architecture for UWB/UHF radio frequency identification systems. In: 2015 International EURASIP Workshop on RFID Technology (EURFID), Rosenheim, pp. 28–35 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vizziello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vizziello, A., Savazzi, P., Kulsoom, F., Magenes, G., Gamba, P. (2019). A Novel Galvanic Coupling Testbed Based on PC Sound Card for Intra-body Communication Links. In: Mucchi, L., Hämäläinen, M., Jayousi, S., Morosi, S. (eds) Body Area Networks: Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-34833-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34833-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34832-8

  • Online ISBN: 978-3-030-34833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics