Skip to main content

Neuroergonomic Applications in Information Visualization

  • Chapter
  • First Online:
Neuroergonomics

Part of the book series: Cognitive Science and Technology ((CSAT))

  • 890 Accesses

Abstract

Information visualization affords us the ability to reason, understand, and gain insight into data. Traditional behavioral and subjective methods of evaluating visualizations are inadequate. Neuroergonomic techniques can be used to complement traditional evaluation methods by assessing noninvasively and unobtrusively participants’ working memory as they engage with the information visualization. In this chapter, we discuss information visualization techniques with an emphasis on evaluating visualizations from a cognitive load perspective. In particular, we review noninvasive functional brain monitoring techniques—electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)—and how they have been used in information visualization research. Both measures of neural activity and task-related performance measures can be combined in a manner that enables the relationship between neural activity and performance to be quantified in terms of efficiency. In this chapter, we discuss visual efficiency, a neuroergonomic metric of information visualization. Finally, we review neuroadaptive interfaces—interfaces that modify their functionality in response to changes in the operator’s cognitive state and needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afergan, D., Peck, E. M., Solovey, E. T., Jenkins, A., Hincks, S. W., Brown, E. T., … & Jacob, R. J. (2014, April). Dynamic difficulty using brain metrics of workload. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems (pp. 3797–3806). ACM.

    Google Scholar 

  • Aghajani, H., Garbey, M., & Omurtag, A. (2017). Measuring mental workload with EEG + fNIRS. Frontiers in Human Neuroscience, 11, 359.

    Article  Google Scholar 

  • Ahmed, A., Chandra, S., Herasevich, V., Gajic, O., & Pickering, B. W. (2011). The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Critical Care Medicine, 39(7), 1626–1634.

    Article  Google Scholar 

  • Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. A., & Silva, C. T. (2011, June). A user study of visualization effectiveness using EEG and cognitive load. In Computer graphics forum (Vol. 30, No. 3, pp. 791–800). Oxford, UK: Blackwell Publishing Ltd.

    Google Scholar 

  • Avarvand, F. S., Bosse, S., Müller, K. R., Schäfer, R., Nolte, G., Wiegand, T., … & Samek, W. (2017). Objective quality assessment of stereoscopic images with vertical disparity using EEG. Journal of Neural Engineering, 14(4), 046009.

    Google Scholar 

  • Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002, June). Models and issues in data stream systems. In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (pp. 1–16). ACM.

    Google Scholar 

  • Banville, H., Parent, M., Tremblay, S., & Falk, T. H. (2018). Toward mental workload measurement using multimodal EEG–fNIRS monitoring. In Neuroergonomics (pp. 245–246). Academic Press.

    Google Scholar 

  • Barkana, D. E., & Açık, A. (2014). Improvement of design of a surgical interface using an eye tracking device. Theoretical Biology and Medical Modelling, 11(1), S4.

    Article  Google Scholar 

  • Bojko, A., Gaddy, C., Lew, G., Quinn, A., & Israelski, E. (2005, September). Evaluation of drug label designs using eye tracking. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 49, No. 11, pp. 1033–1037). Sage, CA; Los Angeles, CA: SAGE Publications.

    Google Scholar 

  • Borgo, R., Micallef, L., Bach, B., McGee, F., & Lee, B. (2018, June). Information visualization evaluation using crowdsourcing. Computer Graphics Forum, 37(3), 573–595.

    Google Scholar 

  • Breslow, L. A., Trafton, J. G., & Ratwani, R. M. (2009). A perceptual process approach to selecting color scales for complex visualizations. Journal of Experimental Psychology: Applied, 15(1), 25.

    Google Scholar 

  • Buccino, A. P., Keles, H. O., & Omurtag, A. (2016). Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks. PLoS ONE, 11(1), e0146610.

    Article  Google Scholar 

  • Cao, N., Lin, C., Zhu, Q., Lin, Y. R., Teng, X., & Wen, X. (2018). Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data. IEEE Transactions on Visualization and Computer Graphics, 24(1), 23–33.

    Article  Google Scholar 

  • Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Causse, M., Chua, Z., Peysakhovich, V., Campo, N., & Matton, N. (2017). Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Scientific Reports, 7(1), 5222.

    Article  Google Scholar 

  • Cernea, D., Kerren, A., & Ebert, A. (2011, November). Detecting insight and emotion in visualization applications with a commercial EEG headset. In Proceedings of SIGRAD 2011. Evaluations of graphics and visualization—Efficiency; Usefulness; Accessibility; Usability; November 17–18; 2011; KTH; Stockholm; Sweden (No. 65, pp. 53–60). Linköping University Electronic Press.

    Google Scholar 

  • Chambers, D., & Reisberg, D. (1985). Can mental images be ambiguous? Journal of Experimental Psychology: Human Perception and Performance, 11(3), 317.

    Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.

    Article  Google Scholar 

  • Cherng, F. Y., Lin, W. C., King, J. T., & Lee, Y. C. (2016, May). An eeg-based approach for evaluating graphic icons from the perspective of semantic distance. In Proceedings of the 2016 Chi Conference on Human Factors in Computing Systems (pp. 4378–438). ACM.

    Google Scholar 

  • Dasgupta, A., Arendt, D. L., Franklin, L. R., Wong, P. C., & Cook, K. A. (2018, February). Human factors in streaming data analysis: Challenges and opportunities for information visualization. Computer Graphics Forum, 37(1), 254–272.

    Google Scholar 

  • Debue, N., & Van De Leemput, C. (2014). What does germane load mean? An empirical contribution to the cognitive load theory. Frontiers in Psychology, 5, 1099.

    Article  Google Scholar 

  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S. R., Wray, S., & Wyatt, J. S. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 33(12), 1433.

    Article  Google Scholar 

  • Elmqvist, N., & Yi, J. S. (2015). Patterns for visualization evaluation. Information Visualization, 14(3), 250–269.

    Article  Google Scholar 

  • Fekete, J. D., Van Wijk, J. J., Stasko, J. T., & North, C. (2008). The value of information visualization. In Information visualization (pp. 1–18). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Freeman, F. G., Mikulka, P. J., Prinzel, L. J., & Scerbo, M. W. (1999). Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biological Psychology, 50(1), 61–76.

    Article  Google Scholar 

  • Freeman, F. G., Mikulka, P. J., Scerbo, M. W., Prinzel, L. J., & Clouatre, K. (2000). Evaluation of a psychophysiologically controlled adaptive automation system, using performance on a tracking task. Applied Psychophysiology and Biofeedback, 25(2), 103–115.

    Article  Google Scholar 

  • Frey, J., Appriou, A., Lotte, F., & Hachet, M. (2016). Classifying EEG signals during stereoscopic visualization to estimate visual comfort. Computational Intelligence and Neuroscience, 2016, 7.

    Article  Google Scholar 

  • Frey, J., Hachet, M., & Lotte, F. (2017). EEG-based neuroergonomics for 3D user interfaces: Opportunities and challenges. Le travail humain, 80(1), 73–92.

    Article  Google Scholar 

  • Frey, J., Mühl, C., Lotte, F., & Hachet, M. (2013). Review of the use of electroencephalography as an evaluation method for human-computer interaction. arXiv preprint. arXiv:1311.2222.

  • Fu, B., Noy, N. F., & Storey, M. A. (2017). Eye tracking the user experience–An evaluation of ontology visualization techniques. Semantic Web, 8(1), 23–41.

    Article  Google Scholar 

  • Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., & Zander, T. O. (2014). Cognitive state monitoring and the design of adaptive instruction in digital environments: Lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Frontiers in Neuroscience, 8, 385.

    Article  Google Scholar 

  • Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1–2), 113–131.

    Article  Google Scholar 

  • Girouard, A., Solovey, E. T., & Jacob, R. J. (2013). Designing a passive brain computer interface using real time classification of functional near-infrared spectroscopy. International Journal of Autonomous and Adaptive Communications Systems, 6(1), 26–44.

    Article  Google Scholar 

  • Goldberg, J. H., & Helfman, J. I. (2010, April). Comparing information graphics: A critical look at eye tracking. In Proceedings of the 3rd BELIV’10 Workshop: Beyond Time and Errors: Novel Evaluation Methods for Information Visualization (pp. 71–78). ACM.

    Google Scholar 

  • Graimann, B., Allison, B., & Pfurtscheller, G. (2009). Brain–computer interfaces: A gentle introduction. In Brain-computer interfaces (pp. 1–27). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., … & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25.

    Google Scholar 

  • Gui, X. U. E., Chuansheng, C. H. E. N., Zhong-Lin, L. U., & Qi, D. O. N. G. (2010). Brain imaging techniques and their applications in decision-making research. Xin li xue bao. Acta psychologica Sinica, 42(1), 120.

    Google Scholar 

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). North-Holland.

    Google Scholar 

  • Hegarty, M. (2018). Advances in cognitive science and information visualization. In Score reporting research and applications (pp. 19–34). Routledge.

    Google Scholar 

  • Hegarty, M. (2011). The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science, 3(3), 446–474.

    Article  Google Scholar 

  • Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(1), 37.

    Article  Google Scholar 

  • Herman, I., Melançon, G., & Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1), 24–43.

    Article  Google Scholar 

  • Hettinger, L. J., Branco, P., Encarnacao, L. M., & Bonato, P. (2003). Neuroadaptive technologies: Applying neuroergonomics to the design of advanced interfaces. Theoretical Issues in Ergonomics Science, 4(1–2), 220–237.

    Article  Google Scholar 

  • Hill, A. P., & Bohil, C. J. (2016). Applications of optical neuroimaging in usability research. Ergonomics in Design, 24(2), 4–9.

    Article  Google Scholar 

  • Hong, K. S., Khan, M. J., & Hong, M. J. (2018). Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Frontiers in Human Neuroscience, 12.

    Google Scholar 

  • Huang, W., Eades, P., & Hong, S. H. (2009). Measuring effectiveness of graph visualizations: A cognitive load perspective. Information Visualization, 8(3), 139–152.

    Article  Google Scholar 

  • Kamzanova, A. T., Kustubayeva, A. M., & Matthews, G. (2014). Use of EEG workload indices for diagnostic monitoring of vigilance decrement. Human Factors, 56(6), 1136–1149.

    Article  Google Scholar 

  • Khan, M. J., & Hong, K. S. (2015). Passive BCI based on drowsiness detection: An fNIRS study. Biomedical Optics Express, 6(10), 4063–4078.

    Article  Google Scholar 

  • Kirchner, E. A., Kim, S. K., Straube, S., Seeland, A., Wöhrle, H., Krell, M. M., … & Fahle, M. (2013). On the applicability of brain reading for predictive human-machine interfaces in robotics. PLoS One, 8(12), e81732.

    Google Scholar 

  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577.

    Article  Google Scholar 

  • Krekhov, A., & Krüger, J. (2019). Deadeye: A novel preattentive visualization technique based on dichoptic presentation. IEEE Transactions on Visualization and Computer Graphics, 25(1), 936–945.

    Article  Google Scholar 

  • Krol, L. R., & Zander, T. O. (2017). Passive BCI-based neuroadaptive systems. In Proceedings of the 7th Graz Brain-Computer Interface Conference (Vol. 2017, pp. 248–253).

    Google Scholar 

  • Kurzhals, K., Höferlin, M., & Weiskopf, D. (2013, June). Evaluation of attention‐guiding video visualization. In Computer graphics forum (Vol. 32, No. 3pt1, pp. 51–60). Oxford, UK: Blackwell Publishing Ltd.

    Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100.

    Article  Google Scholar 

  • Lim, Y., Gardi, A., Sabatini, R., Ramasamy, S., Kistan, T., Ezer, N., … & Bolia, R. (2018). Avionics human-machine interfaces and interactions for manned and unmanned aircraft. Progress in Aerospace Sciences.

    Google Scholar 

  • Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., & Mantini, D. (2017). Detecting large-scale networks in the human brain using high-density electroencephalography. Human Brain Mapping, 38(9), 4631–4643.

    Article  Google Scholar 

  • Lotte, F., & Roy, R. N. (2019). Brain–computer interface contributions to neuroergonomics. In Neuroergonomics (pp. 43–48). Academic Press.

    Google Scholar 

  • Lukanov, K., Maior, H. A., & Wilson, M. L. (2016, May). Using fNIRS in usability testing: Understanding the effect of web form layout on mental workload. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4011–4016). ACM.

    Google Scholar 

  • Mai, C., Hassib, M., & Königbauer, R. (2017, September). Estimating visual discomfort in head-mounted displays using electroencephalography. In IFIP Conference on Human-Computer Interaction (pp. 243–252). Cham: Springer.

    Google Scholar 

  • Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210.

    Article  Google Scholar 

  • Mandrick, K., Chua, Z., Causse, M., Perrey, S., & Dehais, F. (2016). Why a comprehensive understanding of mental workload through the measurement of neurovascular coupling is a key issue for neuroergonomics? Frontiers in Human Neuroscience, 10, 250.

    Article  Google Scholar 

  • Marty, R. (2009). Applied security visualization (p. 552). Upper Saddle River: Addison-Wesley.

    Google Scholar 

  • Mehta, R. K., & Parasuraman, R. (2013). Neuroergonomics: A review of applications to physical and cognitive work. Frontiers in Human Neuroscience, 7, 889.

    Article  Google Scholar 

  • Meyer, J., Shinar, D., & Leiser, D. (1997). Multiple factors that determine performance with tables and graphs. Human Factors, 39(2), 268–286.

    Article  Google Scholar 

  • Mulgund, S. S., Rinkus, G., & Zacharias, G. (2003). Adaptive pilot–vehicle interfaces for the tactical air environment. Virtual and Adaptive Environments, 483.

    Google Scholar 

  • Naseer, N., Noori, F. M., Qureshi, N. K., & Hong, K. S. (2016). Determining optimal feature-combination for LDA classification of functional near-infrared spectroscopy signals in brain-computer interface application. Frontiers in Human Neuroscience, 10, 237.

    Article  Google Scholar 

  • Naseer, N., & Hong, K. S. (2015). fNIRS-based brain-computer interfaces: A review. Frontiers in Human Neuroscience, 9, 3.

    Google Scholar 

  • Noori, F. M., Naseer, N., Qureshi, N. K., Nazeer, H., & Khan, R. A. (2017). Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neuroscience Letters, 647, 61–66.

    Article  Google Scholar 

  • Nuamah, J. K. G. (2018). Effects of information visualization and task type on cognition and judgment in human-system interaction: A neuroergonomic approach. Doctoral dissertation, North Carolina Agricultural and Technical State University.

    Google Scholar 

  • Nuamah, J. K., & Seong, Y. (2017, September). Neural correspondence to human cognition from analysis to intuition–implications of display design for cognition. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 51–55). Sage CA: Los Angeles, CA: SAGE Publications.

    Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71.

    Article  Google Scholar 

  • Paas, F. G., & Van Merriënboer, J. J. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35(4), 737–743.

    Article  Google Scholar 

  • Parasuraman, R. (2011). Neuroergonomics: Brain, cognition, and performance at work. Current Directions in Psychological Science, 20(3), 181–186.

    Article  Google Scholar 

  • Peck, E. M. M., Yuksel, B. F., Ottley, A., Jacob, R. J., & Chang, R. (2013, April). Using fNIRS brain sensing to evaluate information visualization interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 473–482). ACM.

    Google Scholar 

  • Plaisant, C. (2004, May). The challenge of information visualization evaluation. In Proceedings of the Working Conference on Advanced Visual Interfaces (pp. 109–116). ACM.

    Google Scholar 

  • Protzak, J., Ihme, K., & Zander, T. O. (2013). A passive brain-computer interface for supporting gaze-based human-machine interaction. In International Conference on Universal Access in Human-Computer Interaction (pp. 662–671). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

    Article  Google Scholar 

  • Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1–2), 187–195.

    Article  Google Scholar 

  • Price, M. M., Crumley-Branyon, J. J., Leidheiser, W. R., & Pak, R. (2016). Effects of information visualization on older adults’ decision-making performance in a medicare plan selection task: A comparative usability study. JMIR Human Factors, 3(1).

    Google Scholar 

  • Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2000). A closed-loop system for examining psychophysiological measures for adaptive task allocation. The International Journal of Aviation Psychology, 10(4), 393–410.

    Article  Google Scholar 

  • Sargent, A., Heiman-Patterson, T., Feldman, S., Shewokis, P. A., & Ayaz, H. (2018). Mental fatigue assessment in prolonged BCI use through EEG and fNIRS. In Neuroergonomics (pp. 315–316). Academic Press.

    Google Scholar 

  • Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human-Computer Studies, 45(2), 185–213.

    Article  Google Scholar 

  • Scerbo, M. W., Freeman, F. G., & Mikulka, P. J. (2003). A brain-based system for adaptive automation. Theoretical Issues in Ergonomics Science, 4(1–2), 200–219.

    Article  Google Scholar 

  • Scerbo, M. W., Freeman, F. F., Mikulka, P. J., Parasuraman, R., Di Nocera, F. & Prinzel, L. J. (2001). The efficacy of psychophysiological measures for implementing adaptive technology, NASA TP-2001-211018. Hampton, VA: NASA Langley Research Center.

    Google Scholar 

  • Seufert, T., Jänen, I., & Brünken, R. (2007). The impact of intrinsic cognitive load on the effectiveness of graphical help for coherence formation. Computers in Human Behavior, 23(3), 1055–1071.

    Article  Google Scholar 

  • Shi, Y., Zhao, Y., Zhou, F., Shi, R., & Zhang, Y. (2018). A novel radial visualization of intrusion detection alerts. IEEE Computer Graphics and Applications, 38(6), 83–95.

    Article  Google Scholar 

  • Solovey, E., Schermerhorn, P., Scheutz, M., Sassaroli, A., Fantini, S., & Jacob, R. (2012, May). Brainput: Enhancing interactive systems with streaming fnirs brain input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2193–2202). ACM.

    Google Scholar 

  • Stangl, M., Bauernfeind, G., Kurzmann, J., Scherer, R., & Neuper, C. (2013). A haemodynamic brain–computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic. Journal of Near Infrared Spectroscopy, 21(3), 157–171.

    Article  Google Scholar 

  • Tory, M., & Moller, T. (2004). Human factors in visualization research. IEEE Transactions on Visualization and Computer Graphics, 10(1), 72–84.

    Article  Google Scholar 

  • Treacy Solovey, E., Afergan, D., Peck, E. M., Hincks, S. W., & Jacob, R. J. (2015). Designing implicit interfaces for physiological computing: Guidelines and lessons learned using fNIRS. ACM Transactions on Computer-Human Interaction (TOCHI), 21(6), 35.

    Article  Google Scholar 

  • Vassena, E., Gerrits, R., Demanet, J., Verguts, T., & Siugzdaite, R. (2018). Anticipation of a mentally effortful task recruits Dorsolateral Prefrontal Cortex: An fNIRS validation study. Neuropsychologia.

    Google Scholar 

  • Ward, M. O., Grinstein, G., & Keim, D. (2015). Interactive data visualization: Foundations, techniques, and applications. AK Peters/CRC Press.

    Google Scholar 

  • Wickens, C. D., & Ward, J. (2017). Cockpit displays of traffic and weather information: Effects of 3D perspective versus 2D coplanar rendering and database integration. The International Journal of Aerospace Psychology, 27(1–2), 44–56.

    Article  Google Scholar 

  • Widanagamaachchi, W., Livnat, Y., Bremer, P. T., Duvall, S., & Pascucci, V. (2017). Interactive visualization and exploration of patient progression in a hospital setting. In AMIA Annual Symposium Proceedings (Vol. 2017, p. 1773). American Medical Informatics Association.

    Google Scholar 

  • Yin, X., Xu, B., Jiang, C., Fu, Y., Wang, Z., Li, H., & Shi, G. (2015). Classification of hemodynamic responses associated with force and speed imagery for a brain-computer interface. Journal of medical systems, 39(5), 53.

    Google Scholar 

  • Yuksel, B. F., Peck, E. M., Afergan, D., Hincks, S. W., Shibata, T., Kainerstorfer, J., … & Jacob, R. J. (2015, March). Functional near-infrared spectroscopy for adaptive human-computer interfaces. In Optical tomography and spectroscopy of tissue XI (Vol. 9319, p. 93190R). International Society for Optics and Photonics.

    Google Scholar 

  • Zagermann, J., Pfeil, U., & Reiterer, H. (2016, October). Measuring cognitive load using eye tracking technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (pp. 78–85). ACM.

    Google Scholar 

  • Zander, T. O., & Kothe, C. (2011). Towards passive brain–computer interfaces: Applying brain–computer interface technology to human–machine systems in general. Journal of Neural Engineering, 8(2), 025005.

    Article  Google Scholar 

  • Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. (2016). Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proceedings of the National Academy of Sciences, 113(52), 14898–14903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana K. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nuamah, J.K., Mehta, R.K. (2020). Neuroergonomic Applications in Information Visualization. In: Nam, C. (eds) Neuroergonomics. Cognitive Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34784-0_21

Download citation

Publish with us

Policies and ethics