Skip to main content

Fundamentals and Emerging Trends of Neuroergonomic Applications to Driving and Navigation

  • Chapter
  • First Online:
Neuroergonomics

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

The state-of-the-art vehicle automation and navigation technologies promise to augment or even replace diverse human functions in driving. For safety assurance on roadways, vehicles need to be informed about the humans (not only their presence but also mental states) in and around the vehicle. Yet, the uncertainties of drivers’ mental states under varying traffic situations make it difficult to provide such information. In this regard, neuroergonomics have potential to help bridge human and automation toward the next level of integration. In this chapter, we aim to provide an appreciation of neuroergonomic application to driving and navigation, with an emphasis on drivers’ cognitive tasks and performance. Particularly, the four main cognitive constructs associated with driving—attention, situation awareness (SA), intent, and mental workload—are reviewed in terms of their theoretical foundations and recent applications in neuroergonomic studies. The effects of special demographic population and environmental selection for such study are also discussed. To the readers who are interested in understanding the effects of next-generation vehicle technologies on humans or who aspire for the breakthrough in neuroergonomics for new driving and navigation technology, this chapter may provide a useful source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, R. A., Stemmons, V. A., & Vandillen, L. (1991). Multiple sources of spatial information for aimed limb movements. In Bulletin of the Psychonomic Society (Vol. 29, p. 520). Psychonomic Soc Inc 1710 Fortview Rd, Austin, TX 78704.

    Google Scholar 

  • Adams, M. J., Tenney, Y. J., & Pew, R. W. (1995). Situation awareness and the cognitive management of complex systems. Human Factors, 37(1), 85–104. https://doi.org/10.1518/001872095779049462.

    Article  Google Scholar 

  • Akita, T., Shirahige, H., Seunghee, H., Hayashi, J., Suzuki, K., & Doi, S. (2014). Research of stop assistance considering visibility of Intersection. International Journal of Automotive Engineering, 5(2), 65–71. https://doi.org/10.20485/jsaeijae.5.2_65.

  • Amalberti, R., & Deblon, F. (1992). Cognitive modelling of fighter aircraft process control: a step towards an intelligent on-board assistance system. International Journal of Man-Machine Studies, 36(5), 639–671.

    Article  Google Scholar 

  • Amunts, K., Schleicher, A., & Zilles, K. (2007). Cytoarchitecture of the cerebral cortex—more than localization. Neuroimage, 37(4), 1061–1065.

    Article  Google Scholar 

  • Baldwin, D. A., & Baird, J. A. (2001). Discerning intentions in dynamic human action. Trends in Cognitive Sciences, 5(4), 171–178.

    Article  Google Scholar 

  • Balk, S. A., Bertola, M. A., Shurbutt, J., & Do, A. (2014). Human factors assessment of pedestrian roadway crossing behavior.

    Google Scholar 

  • Banks, V. A., & Stanton, N. A. (2017). Automobile automation: distributed cognition on the road. CRC Press.

    Google Scholar 

  • Baumann, M., & Krems, J. F. (2007). Situation awareness and driving: A cognitive model. In Modelling driver behaviour in automotive environments (pp. 253–265). Springer.

    Google Scholar 

  • Ben-Chaim, D., Lappan, G., & Houang, R. T. (1988). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25(1), 51–71.

    Article  Google Scholar 

  • Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., … Craven, P. L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine, 78(5), B231–B244.

    Google Scholar 

  • Bizzi, E., Accornero, N., Chapple, W., & Hogan, N. (1984). Posture control and trajectory formation during arm movement. Journal of Neuroscience, 4(11), 2738–2744.

    Article  Google Scholar 

  • Borghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., Isabella, R., … Zhou, Z. (2012). Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6442–6445). IEEE.

    Google Scholar 

  • Broadbent, D. E. (1970). Stimulus set and response set: Two kinds of selective attention.

    Google Scholar 

  • Brouwer, A.-M., van der Waa, J. S., Hogervorst, M. A., Cacace, A., & Stokking, H. (2017). A feasible BCI in real life: Using predicted head rotation to improve HMD imaging. In Proceedings of the 2017 ACM Workshop on An Application-oriented Approach to BCI out of the laboratory (pp. 35–38). ACM.

    Google Scholar 

  • Brown, B., Park, D., Sheehan, B., Shikoff, S., Solomon, J., Yang, J., & Kim, I. (2018). Assessment of human driver safety at Dilemma Zones with automated vehicles through a virtual reality environment. In Systems and Information Engineering Design Symposium (SIEDS), 2018 (pp. 185–190). IEEE.

    Google Scholar 

  • Brown, I. D. (1990). Drivers’ margins of safety considered as a focus for research on error. Ergonomics, 33(10–11), 1307–1314.

    Article  Google Scholar 

  • Brown, I. D. (2002). A review of the’looked but failed to see’accident causation factor. In behavioural research in road safety: Eleventh Seminar.

    Google Scholar 

  • Calderó-Bardají, P., Longfei, X., Jaschke, S., Reermann, J., Mideska, K. G., Schmidt, G., … Muthuraman, M. (2016). Detection of steering direction using EEG recordings based on sample entropy and time-frequency analysis. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 833–836). IEEE.

    Google Scholar 

  • Catherwood, D., Edgar, G. K., Nikolla, D., Alford, C., Brookes, D., Baker, S., et al. (2014). Mapping brain activity during loss of situation awareness: An EEG investigation of a basis for top-down influence on perception. Human Factors, 56(8), 1428–1452.

    Article  Google Scholar 

  • Charissis, V., & Naef, M. (2007). Evaluation of prototype automotive head-up display interface: testing driver’s focusing ability through a VR simulation. In 2007 IEEE Intelligent Vehicles Symposium (pp. 560–565). IEEE.

    Google Scholar 

  • Chouvarda, I., Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P. D., Koufogiannis, D., Bekiaris, E., & Maglaveras, N. (2007). Non-linear analysis for the sleepy drivers problem. In Medinfo 2007: Proceedings of the 12th World Congress on Health (Medical) Informatics; Building Sustainable Health Systems (p. 1294). IOS Press.

    Google Scholar 

  • Churchland, M. M., Afshar, A., & Shenoy, K. V. (2006). A central source of movement variability. Neuron, 52(6), 1085–1096.

    Article  Google Scholar 

  • Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., … Babiloni, F. (2008). Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Research Bulletin, 75(6), 796–803.

    Google Scholar 

  • Cui, Y., & Wu, D. (2017). EEG-based driver drowsiness estimation using convolutional neural networks. In International Conference on Neural Information Processing (pp. 822–832). Springer.

    Google Scholar 

  • De Winter, J. C. F., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 196–217.

    Article  Google Scholar 

  • Deshmukh, S. V, & Dehzangi, O. (2017). ECG-based driver distraction identification using wavelet packet transform and discriminative kernel-based features. In Smart Computing (SMARTCOMP), 2017 IEEE International Conference on (pp. 1–7). IEEE.

    Google Scholar 

  • Dobbs, A. R. (1997). Evaluating the driving competence of dementia patients. Alzheimer Disease and Associated Disorders, 11, 8–12.

    Article  Google Scholar 

  • Dong, Y., Hu, Z., Uchimura, K., & Murayama, N. (2011). Driver inattention monitoring system for intelligent vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2), 596–614.

    Article  Google Scholar 

  • Eason, R. G., Harter, M. R., & White, C. T. (1969). Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology & Behavior, 4(3), 283–289.

    Article  Google Scholar 

  • Endsley, M. R. (1988). Design and evaluation for situation awareness enhancement. In Proceedings of the Human Factors Society annual meeting (Vol. 32, pp. 97–101). SAGE Publications Sage CA: Los Angeles, CA.

    Google Scholar 

  • Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32–64.

    Article  Google Scholar 

  • Engström, J., Victor, T., & Markkula, G. (2017). Attention selection and multitasking in everyday driving: A conceptual model. In Driver Distraction and Inattention (pp. 27–54). CRC Press.

    Google Scholar 

  • Fan, J., Wade, J. W., Key, A. P., Warren, Z. E., & Sarkar, N. (2018). EEG-based affect and workload recognition in a virtual driving environment for ASD intervention. IEEE Transactions on Biomedical Engineering, 65(1), 43–51.

    Article  Google Scholar 

  • Fastenmeier, W., & Gstalter, H. (2007). Driving task analysis as a tool in traffic safety research and practice. Safety Science, 45(9), 952–979.

    Article  Google Scholar 

  • Forster, Y., Naujoks, F., Neukum, A., & Huestegge, L. (2017). Driver compliance to take-over requests with different auditory outputs in conditional automation. Accident Analysis and Prevention, 109, 18–28.

    Article  Google Scholar 

  • Fracker, M. L. (1988). A theory of situation assessment: Implications for measuring situation awareness. In Proceedings of the Human Factors Society Annual Meeting (Vol. 32, pp. 102–106). SAGE Publications Sage CA: Los Angeles, CA.

    Google Scholar 

  • French, H. T., Clarke, E., Pomeroy, D., Seymour, M., & Clark, C. R. (2007). Psycho-physiological measures of situation awareness. Decision Making in Complex Environments, 291.

    Google Scholar 

  • Fu, R., Wang, H., & Zhao, W. (2016). Dynamic driver fatigue detection using hidden Markov model in real driving condition. Expert Systems with Applications, 63, 397–411.

    Article  Google Scholar 

  • Fu, S., & Parasuraman, R. (2006). Event-related potentials (ERPs) in neuroergonomics. Oxford Series in Human-Technology Interaction, 32.

    Google Scholar 

  • Gallivan, J. P., Logan, L., Wolpert, D. M., & Flanagan, J. R. (2016). Parallel specification of competing sensorimotor control policies for alternative action options. Nature Neuroscience, 19(2), 320.

    Article  Google Scholar 

  • Gallivan, J. P., McLean, D. A., Valyear, K. F., & Culham, J. C. (2013). Decoding the neural mechanisms of human tool use. Elife, 2, e00425.

    Article  Google Scholar 

  • Gao, Z., Li, S., Cai, Q., Dang, W., Yang, Y., Mu, C., et al. (2018). Relative wavelet entropy complex network for improving EEG-based fatigue driving classification. IEEE Transactions on Instrumentation and Measurement, 99, 1–7.

    Google Scholar 

  • Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience. New York: W. W. Norton & Company.

    Google Scholar 

  • Hajinoroozi, M., Zhang, J., & Huang, Y. (2017). Prediction of fatigue-related driver performance from EEG data by deep Riemannian model. In Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE (pp. 4167–4170). IEEE.

    Google Scholar 

  • Haufe, S., Kim, J.-W., Kim, I.-H., Sonnleitner, A., Schrauf, M., Curio, G., et al. (2014). Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of Neural Engineering, 11(5), 56011.

    Article  Google Scholar 

  • Haufe, S., Treder, M. S., Gugler, M. F., Sagebaum, M., Curio, G., & Blankertz, B. (2011). EEG potentials predict upcoming emergency brakings during simulated driving. Journal of Neural Engineering, 8(5), 56001.

    Article  Google Scholar 

  • Heger, D., Putze, F., & Schultz, T. (2010). Online workload recognition from EEG data during cognitive tests and human-machine interaction. In Annual Conference on Artificial Intelligence (pp. 410–417). Springer.

    Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284.

    Article  Google Scholar 

  • Horswill, M. S., & McKenna, F. P. (2004). Drivers’ hazard perception ability: Situation awareness on the road. A Cognitive Approach to Situation Awareness: Theory and Application, 155–175.

    Google Scholar 

  • Hu, J. (2017). Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Computational and Mathematical Methods in Medicine, 2017.

    Google Scholar 

  • Hu, J., & Min, J. (2018). Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognitive Neurodynamics, 1–10.

    Google Scholar 

  • Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces. Human-Computer Interaction, 1(4), 311–338.

    Article  Google Scholar 

  • Jacko, J. A. (2012). Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications. CRC press.

    Google Scholar 

  • Jap, B. T., Lal, S., Fischer, P., & Bekiaris, E. (2009). Using EEG spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications, 36(2), 2352–2359.

    Article  Google Scholar 

  • Johnson, R. R., Stone, B. T., Miranda, C. M., Vila, B., James, L., James, S. M., … Berka, C. (2014). Identifying psychophysiological indices of expert vs. novice performance in deadly force judgment and decision making. Frontiers in Human Neuroscience. Retrieved from https://www.frontiersin.org/article/10.3389/fnhum.2014.00512.

  • Just, M. A., Carpenter, P. A., Keller, T. A., Emery, L., Zajac, H., & Thulborn, K. R. (2001). Interdependence of nonoverlapping cortical systems in dual cognitive tasks. Neuroimage, 14(2), 417–426.

    Article  Google Scholar 

  • Kaber, D. B., & Endsley, M. R. (2004). The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theoretical Issues in Ergonomics Science, 5(2), 113–153.

    Article  Google Scholar 

  • Keele, S. W. (1986). Motor control.

    Google Scholar 

  • Khaliliardali, Z., Chavarriaga, R., Gheorghe, L. A., & del Millán, J. R. (2015). Action prediction based on anticipatory brain potentials during simulated driving. Journal of Neural Engineering, 12(6), 66006.

    Article  Google Scholar 

  • Kihlstrom, J. F. (1984). Conscious, subconscious, unconscious: A cognitive perspective.

    Google Scholar 

  • Kim, H., Kim, W., Kim, J., Lee, S.-J., & Yoon, D. (2018). Design of driver readiness evaluation system in automated driving environment. In 2018 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 300–302). IEEE.

    Google Scholar 

  • Kim, H. S., Hwang, Y., Yoon, D., Choi, W., & Park, C. H. (2014a). Driver workload characteristics analysis using EEG data from an urban road. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1844–1849.

    Article  Google Scholar 

  • Kim, H. S., Yoon, D., Shin, H. S., & Park, C. H. (2018b). Predicting the EEG level of a driver based on driving information. IEEE Transactions on Intelligent Transportation Systems, 99, 1–11.

    Google Scholar 

  • Kim, I.-H., Kim, J.-W., Haufe, S., & Lee, S.-W. (2013). Detection of multi-class emergency situations during simulated driving from ERP. In Brain-Computer Interface (BCI), 2013 International Winter Workshop on (pp. 49–51). IEEE.

    Google Scholar 

  • Kim, J.-W., Kim, I.-H., & Lee, S.-W. (2014). Decision of braking intensity during simulated driving based on analysis of neural correlates. In Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on (pp. 4129–4132). IEEE.

    Google Scholar 

  • Kim, J. Y., Jeong, C. H., Jung, M. J., Park, J. H., & Jung, D. H. (2013b). Highly reliable driving workload analysis using driver electroencephalogram (EEG) activities during driving. International Journal of Automotive Technology, 14(6), 965–970.

    Article  Google Scholar 

  • Klauer, S. G., Dingus, T. A., Neale, V. L., Sudweeks, J. D., & Ramsey, D. J. (2006). The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data.

    Google Scholar 

  • Kohlmorgen, J., Dornhege, G., Braun, M., Blankertz, B., Müller, K.-R., Curio, G., … Kincses, W. (2007). Improving human performance in a real operating environment through real-time mental workload detection. Toward Brain-Computer Interfacing, 409–422.

    Google Scholar 

  • Lee, J. D., Kirlik, A., & Dainoff, M. J. (2013). The Oxford handbook of cognitive engineering. Oxford University Press.

    Google Scholar 

  • Lee, J., McGehee, D., Brown, T., & Marshall, D. (2006). Effects of adaptive cruise control and alert modality on driver performance. Transportation Research Record: Journal of the Transportation Research Board, 1980, 49–56.

    Article  Google Scholar 

  • Lei, S., & Roetting, M. (2011). Influence of task combination on EEG spectrum modulation for driver workload estimation. Human Factors, 53(2), 168–179.

    Article  Google Scholar 

  • Lenzi, T., De Rossi, S. M. M., Vitiello, N., & Carrozza, M. C. (2012). Intention-based EMG control for powered exoskeletons. IEEE Transactions on Biomedical Engineering, 59(8), 2180–2190.

    Article  Google Scholar 

  • Lew, E., Chavarriaga, R., Silvoni, S., & del Millán, J. R. (2012). Detection of self-paced reaching movement intention from EEG signals. Frontiers in Neuroengineering, 5, 13.

    Article  Google Scholar 

  • Li, Y. (2018). Recognition algorithm of driving fatigue related problems based on EEG signals. NeuroQuantology, 16(6).

    Google Scholar 

  • Lin, C.-T., Chen, Y.-C., Huang, T.-Y., Chiu, T.-T., Ko, L.-W., Liang, S.-F., … Duann, J.-R. (2008). Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver’s drowsiness detection and warning. IEEE Transactions on Biomedical Engineering, 55(5), 1582–1591.

    Google Scholar 

  • Lin, C.-T., Wu, R.-C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., & Jung, T.-P. (2005). EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2726–2738.

    Article  Google Scholar 

  • Liu, Y.-T., Lin, Y.-Y., Wu, S.-L., Chuang, C.-H., Prasad, M., & Lin, C.-T. (2014). EEG-based driving fatigue prediction system using functional-link-based fuzzy neural network. In 2014 International Joint Conference on Neural Networks (IJCNN) (pp. 4109–4113). IEEE.

    Google Scholar 

  • Ma, R., & Kaber, D. B. (2005). Situation awareness and workload in driving while using adaptive cruise control and a cell phone. International Journal of Industrial Ergonomics, 35(10), 939–953.

    Article  Google Scholar 

  • Ma, R., & Kaber, D. B. (2007). Situation awareness and driving performance in a simulated navigation task. Ergonomics, 50(8), 1351–1364.

    Article  Google Scholar 

  • MacKay, D. G. (2012). The organization of perception and action: A theory for language and other cognitive skills. Springer Science & Business Media.

    Google Scholar 

  • Mangun, G. R., Hillyard, S. A., & Luck, S. J. (1993). IQ electrocortical substrates of visual selective attention. Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience, 14, 219.

    Google Scholar 

  • Merat, N., Seppelt, B., Louw, T., Engström, J., Lee, J. D., Johansson, E., … Itoh, M. (2019). The “out-of-the-loop” concept in automated driving: Proposed definition, measures and implications. Cognition, Technology & Work, 21(1), 87–98.

    Google Scholar 

  • Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214.

    Article  Google Scholar 

  • Nguyen, T., Ahn, S., Jang, H., Jun, S. C., & Kim, J. G. (2017). Utilization of a combined EEG/NIRS system to predict driver drowsiness. Scientific Reports, 7, 43933.

    Article  Google Scholar 

  • Norman, D. (2013). The design of everyday things: Revised and expanded edition. Constellation.

    Google Scholar 

  • Pakdamanian, E., Feng, L., & Kim, I. (2018). The effect of whole-body haptic feedback on driver’s perception in negotiating a curve. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 62, pp. 19–23). SAGE Publications Sage CA: Los Angeles, CA.

    Google Scholar 

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12.

    Google Scholar 

  • Ranney, T. A., Garrott, W. R., & Goodman, M. J. (2001). NHTSA driver distraction research: Past, present, and future. SAE Technical Paper.

    Google Scholar 

  • Richard, C. M., Morgan, J. F., Bacon, L. P., Graving, J. S., Divekar, G., & Lichty, M. G. (2015). Multiple sources of safety information from v2v and v2i: Redundancy, decision making, and trust—safety message design report.

    Google Scholar 

  • Sarter, N. B., & Woods, D. D. (1991). Situation awareness: A critical but ill-defined phenomenon. The International Journal of Aviation Psychology, 1(1), 45–57.

    Article  Google Scholar 

  • Sarter, N. B., Woods, D. D., & Billings, C. E. (1997). Automation surprises. In Handbook of human factors and ergonomics (Vol. 2, pp. 1926–1943). New York: Wiley.

    Google Scholar 

  • Sayed, T., Zaki, M. H., & Autey, J. (2013). Automated safety diagnosis of vehicle–bicycle interactions using computer vision analysis. Safety Science, 59, 163–172.

    Article  Google Scholar 

  • Schmidt, E. A., Schrauf, M., Simon, M., Fritzsche, M., Buchner, A., & Kincses, W. E. (2009). Drivers’ misjudgement of vigilance state during prolonged monotonous daytime driving. Accident Analysis and Prevention, 41(5), 1087–1093.

    Article  Google Scholar 

  • Schmorrow, D., Kruse, A., Reeves, L., & Bolton, A. (2007). Augmenting cognition in HCI: 21st century adaptive system science and technology. In The Human-Computer Interaction Handbook (pp. 1247–1266). CRC Press.

    Google Scholar 

  • Singh, S. (2015). Critical reasons for crashes investigated in the national motor vehicle crash causation survey.

    Google Scholar 

  • Sisiopiku, V. P. (2001). Implications of cellular telephony to traffic safety. Michigan: Michigan State University.

    Google Scholar 

  • Skinner, B. T., Nguyen, H. T., & Liu, D. K. (2007). Classification of EEG signals using a genetic-based machine learning classifier. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 3120–3123). IEEE.

    Google Scholar 

  • Smith, K., & Hancock, P. A. (1995). Situation awareness is adaptive, externally directed consciousness. Human Factors, 37(1), 137–148.

    Article  Google Scholar 

  • Stanton, N. A., Young, M., & McCaulder, B. (1997). Drive-by-wire: the case of driver workload and reclaiming control with adaptive cruise control. Safety Science, 27(2–3), 149–159.

    Article  Google Scholar 

  • Stanton, N. A., & Young, M. S. (2000). A proposed psychological model of driving automation. Theoretical Issues in Ergonomics Science, 1(4), 315–331.

    Article  Google Scholar 

  • Strayer, D. L., & Drews, F. A. (2007). Cell-phone–induced driver distraction. Current Directions in Psychological Science, 16(3), 128–131.

    Article  Google Scholar 

  • Stutts, J. C., Reinfurt, D. W., Staplin, L., & Rodgman, E. A. (2001). The role of driver distraction in traffic crashes. Washington, DC: Report prepared for AAA Foundation for Traffic Safety.

    Book  Google Scholar 

  • Taylor, R. M., & Selcon, S. J. (1994). Situation in mind: Theory, application and measurement of situational awareness. Situational Awareness in Complex Settings, 69–78.

    Google Scholar 

  • Teng, T., Bi, L., & Liu, Y. (2018). EEG-based detection of driver emergency braking intention for brain-controlled vehicles. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1766–1773.

    Article  Google Scholar 

  • Tenney, Y. J., Adams, M. J., Pew, R. W., Huggins, A. W. F., & Rogers, W. H. (1992). A principled approach to the measurement of situation awareness in commercial aviation.

    Google Scholar 

  • Victor, T., Dozza, M., Bärgman, J., Boda, C.-N., Engström, J., Flannagan, C., … Markkula, G. (2015). Analysis of naturalistic driving study data: Safer glances, driver inattention, and crash risk.

    Google Scholar 

  • Weidner, F., Hoesch, A., Poeschl, S., & Broll, W. (2017). Comparing VR and non-VR driving simulations: An experimental user study. In 2017 IEEE Virtual Reality (VR) (pp. 281–282). https://doi.org/10.1109/VR.2017.7892286.

  • Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50(3), 449–455.

    Article  Google Scholar 

  • Wickens, C. D., & McCarley, J. S. (2008). Applied attention theory.

    Google Scholar 

  • Wiegmann, A. F. K. D. A., & Kirlik, A. (2007). Attention: From theory to practice (Vol. 4). Oxford University Press.

    Google Scholar 

  • Wijdenes, L. O., Ivry, R. B., & Bays, P. M. (2016). Competition between movement plans increases motor variability: evidence of a shared resource for movement planning. American Journal of Physiology-Heart and Circulatory Physiology.

    Google Scholar 

  • Yang, G., Lin, Y., & Bhattacharya, P. (2010). A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Information Sciences, 180(10), 1942–1954.

    Article  Google Scholar 

  • Yeo, M. V. M., Li, X., Shen, K., & Wilder-Smith, E. P. V. (2009). Can SVM be used for automatic EEG detection of drowsiness during car driving? Safety Science, 47(1), 115–124.

    Article  Google Scholar 

  • Zeng, H., Yang, C., Dai, G., Qin, F., Zhang, J., & Kong, W. (2018). EEG classification of driver mental states by deep learning. Cognitive Neurodynamics, 12(6), 597–606.

    Article  Google Scholar 

  • Zhang, H., Chavarriaga, R., Khaliliardali, Z., Gheorghe, L., Iturrate, I., & del Millán, J. R. (2015). EEG-based decoding of error-related brain activity in a real-world driving task. Journal of Neural Engineering, 12(6), 66028.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inki Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, I., Pakdamanian, E., Hiremath, V. (2020). Fundamentals and Emerging Trends of Neuroergonomic Applications to Driving and Navigation. In: Nam, C. (eds) Neuroergonomics. Cognitive Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34784-0_19

Download citation

Publish with us

Policies and ethics