Skip to main content

Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation

  • Chapter
  • First Online:
Neuroergonomics

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Brain–computer interface (BCI) is an emerging tool that has a variety of practical applications, including rehabilitation. BCIs are systems that extract and classify features in neural data, and then produce an output when a specific feature is detected. Motor imagery-based BCIs (MI BCIs), a more specific form of BCI, detect features that indicate the user is imagining a specific motor action, such as moving their arm or leg. There have been several studies released discussing the potential for BCIs to be used in a clinical setting for applications like rehabilitation. Spinal cord injuries (SCIs) are a form of injury that damages the spinal cord and causes either partial or total paralyzation. Those with SCI typically undergo rehabilitation for many years after the injury, and BCIs have begun to be tested for their benefits when included in SCI rehabilitation sessions. There are several ways for BCI systems to be used in SCI rehabilitation, which include virtual reality, exoskeletons, and neuroprosthesis. When using these methods as an output for a BCI system, SCI patients experience numerous benefits, most notably being an increase in mobility in the paralyzed region of their body. While there are several advantages to using BCIs for SCI rehabilitation, there are also several challenges that need to be addressed. In this chapter, we will discuss the current potential of BCIs for SCI rehabilitation, as well as what areas of this field need to be improved in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., … & Peckham, P. H. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821–1830.

    Google Scholar 

  • Alam, M., Rodrigues, W., Pham, B. N., & Thakor, N. V. (2016). Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Brain Research, 1646, 25–33.

    Article  Google Scholar 

  • Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., et al. (2015). A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clinical EEG and Neuroscience, 46(4), 310–320.

    Article  Google Scholar 

  • Blabe, C. H., Gilja, V., Chestek, C. A., Shenoy, K. V., Anderson, K. D., & Henderson, J. M. (2015). Assessment of brain-machine interfaces from the perspective of people with paralysis. Journal of Neural Engineering, 12(4), 043002.

    Article  Google Scholar 

  • Blankertz, B., Muller, K. R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., … & Birbaumer, N. (2006). The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 153–159.

    Google Scholar 

  • Bockbrader, M. A., Francisco, G., Lee, R., Olson, J., Solinsky, R., & Boninger, M. L. (2018). Brain computer interfaces in rehabilitation medicine. PM&R, 10(9), S233–S243.

    Article  Google Scholar 

  • Burwell, S., Sample, M., & Racine, E. (2017). Ethical aspects of brain computer interfaces: A scoping review. BMC Medical Ethics, 18(1), 60.

    Article  Google Scholar 

  • Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E. M., Mignardot, J., … Courtine, G. (2016). A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature, 539(7628), 284–288.

    Article  Google Scholar 

  • Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain–computer interfaces for communication and rehabilitation. Nature Reviews Neurology, 12(9), 513.

    Article  Google Scholar 

  • Colachis, S. C., Bockbrader, M. A., Zhang, M., Friedenberg, D. A., Annetta, N. V., Schwemmer, M. A., … Sharma, G. (2018). Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Frontiers in Neuroscience, 12, 208.

    Google Scholar 

  • Donati, A. R. C., Shokur, S., Morya, E., Campos, D. S. F., Moioli, R. C., Gitti, C. M., … Nicolelis, M. A. L. (2016). Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports, 6, 30383.

    Google Scholar 

  • Foldes, S. T., Weber, D. J., & Collinger, J. L. (2015). MEG-based neurofeedback for hand rehabilitation. Journal of Neuroengineering and Rehabilitation, 12, 85. https://doi.org/10.1186/s12984-015-0076-7.

    Article  Google Scholar 

  • Frolov, A. A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, S., Turbina, L., et al. (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Frontiers in neuroscience, 11, 400.

    Article  Google Scholar 

  • Glezerman, M. (2016). Yes, there is a female and a male brain: Morphology versus functionality. Proceedings of the National Academy of Sciences of the United States of America, 113(14), E1971.

    Article  Google Scholar 

  • Gorgey, A. S. (2018). Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics, 9(9), 112–119.

    Article  Google Scholar 

  • Höller, Y., Thomschewski, A., Uhl, A., Bathke, A. C., Nardone, R., Leis, S., … Höller, P.(2018). HD-EEG based classification of motor-imagery related activity in patients with spinal cord injury. Frontiers in Neurology, 9, 955.

    Google Scholar 

  • Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016). Transfer learning in brain-computer interfaces. IEEE Computational Intelligence Magazine, 11(1), 20–31.

    Article  Google Scholar 

  • Kilgore, K. L., Bryden, A., Keith, M. W., Hoyen, H. A., Hart, R. L., Nemunaitis, G. A., et al. (2018). Evolution of neuroprosthetic approaches to restoration of upper extremity function in spinal cord injury. Topics in Spinal Cord Injury Rehabilitation, 24(3), 252–264.

    Article  Google Scholar 

  • Lahr, J., Schwartz, C., Heimbach, B., Aertsen, A., Rickert, J., & Ball, T. (2015). Invasive brain-machine interfaces: A survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval. Journal of Neural Engineering, 12(4), 043001.

    Article  Google Scholar 

  • Lazarou, I., Nikolopoulos, S., Petrantonakis, P. C., Kompatsiaris, I., & Tsolaki, M. (2018). EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century. Frontiers in Human Neuroscience, 12, 14.

    Article  Google Scholar 

  • Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767–837.

    Article  Google Scholar 

  • Likitlersuang, J., Koh, R., Gong, X., Jovanovic, L., Bolivar-Tellería, I., Myers, M., … Márquez-Chin, C. (2018). EEG-controlled functional electrical stimulation therapy with automated grasp selection: A proof-of-concept study. Topics in Spinal Cord Injury Rehabilitation, 24(3), 265–274.

    Article  Google Scholar 

  • Louie, D. R., Eng, J. J., & Lam, T. (2015). Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of neuroengineering and rehabilitation, 12(1), 82.

    Article  Google Scholar 

  • Madhura, I., Alex, S., Drew, P., Theodore, D. S., Mark, A. E., Kosha, R., …, Ragini, V. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 823-828. https://doi.org/10.1073/pnas.1316909110.

    Article  Google Scholar 

  • Mateo, S., Di Rienzo, F., Bergeron, V., Guillot, A., Collet, C., & Rode, G. (2015). Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury. Frontiers in Behavioral Neuroscience, 9, 234.

    Article  Google Scholar 

  • McCrimmon, C. M., Ming Wang, n., Silva Lopes, L., Wang, P. T., Karimi-Bidhendi, A., Liu, C. Y., … Do, A. H. (2016). A small, portable, battery-powered brain-computer interface system for motor rehabilitation. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2016, 2776–2779.

    Google Scholar 

  • Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159.

    Article  Google Scholar 

  • Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., et al. (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Annals of Neurology, 77(5), 851–865.

    Article  Google Scholar 

  • Pichiorri, F., Mrachacz-Kersting, N., Molinari, M., Kleih, S., Kübler, A., & Mattia, D. (2017). Brain-computer interface based motor and cognitive rehabilitation after stroke–state of the art, opportunity, and barriers: summary of the BCI Meeting 2016 in Asilomar. Brain-Computer Interfaces, 4(1–2), 53–59.

    Article  Google Scholar 

  • Salisbury, D. B., Driver, S., & Parsons, T. D. (2015). Brain-computer interface targeting non-motor functions after spinal cord injury: A case report. Spinal Cord, 53(S1), S25.

    Article  Google Scholar 

  • Salisbury, D. B., Dahdah, M., Driver, S., Parsons, T. D., & Richter, K. M. (2016). Virtual reality and brain computer interface in neurorehabilitation. Proceedings (Baylor University. Medical Center), 29(2), 124–127.

    Google Scholar 

  • Salisbury, D. B., Parsons, T. D., Monden, K. R., Trost, Z., & Driver, S. J. (2016b). Brain-computer interface for individuals after spinal cord injury. Rehabilitation Psychology, 61(4), 435–441.

    Article  Google Scholar 

  • Scandola, M., Aglioti, S. M., Pozeg, P., Avesani, R., & Moro, V. (2017). Motor imagery in spinal cord injured people is modulated by somatotopic coding, perspective taking, and post-lesional chronic pain. Journal of Neuropsychology, 11(3), 305–326.

    Article  Google Scholar 

  • Slutzky, M. W. (2018). Brain-machine interfaces: powerful tools for clinical treatment and neuroscientific investigations. The Neuroscientist, 1073858418775355.

    Google Scholar 

  • Tariq, M., Trivailo, P. M., & Simic, M. (2018). EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience, 12, 312.

    Article  Google Scholar 

  • Thomschewski, A., Ströhlein, A., Langthaler, P. B., Schmid, E., Potthoff, J., Höller, P., … Höller, Y. (2017). Imagine there is no plegia. mental motor imagery difficulties in patients with traumatic spinal cord injury. Frontiers in Neuroscience, 11, 689.

    Google Scholar 

  • Vidal, J. J. (1973). Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 2(1), 157–180.

    Article  MathSciNet  Google Scholar 

  • Wirz, M., van Hedel, & Hubertus, J. A. (2018). Balance, gait, and falls in spinal cord injury. Handbook of Clinical Neurology, 159, 367–384.

    Article  Google Scholar 

  • Yoshida, N., Hashimoto, Y., Shikota, M., & Ota, T. (2016). Relief of neuropathic pain after spinal cord injury by brain-computer interface training. Spinal Cord Series and Cases, 2, 16021.

    Article  Google Scholar 

  • Zanini, P., Congedo, M., Jutten, C., Said, S., & Berthoumieu, Y. (2018). Transfer learning: a Riemannian geometry framework with applications to brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 65(5), 1107–1116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang S. Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merante, A., Zhang, Y., Kumar, S., Nam, C.S. (2020). Brain–Computer Interfaces for Spinal Cord Injury Rehabilitation. In: Nam, C. (eds) Neuroergonomics. Cognitive Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34784-0_16

Download citation

Publish with us

Policies and ethics