Advertisement

Towards a Trusted Virtual Smart Cities Operation Center Using the Blockchain Mirror Model

  • Emanuele BelliniEmail author
  • Alessandro Bellini
  • Franco Pirri
  • Laura Coconea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11938)

Abstract

The article proposes a new vision for the smart city operation center combining blockchain and virtual reality. The objective is to achieve high synchronization among the different operators, an enhanced operator performance and the creation of a trustworthy communication layer to record all the decisions taken in the virtual environment and to share data among the operators securely.

Keywords

Blockchain Internet of Everything Trust Smart city operation center Virtual reality 

Notes

Acknowledgment

The present work is partially supported by e-Kinesys project funded by Fondazione Cassa di Risparmio di Firenze.

References

  1. 1.
    Bellini, E., Nesi, P.: Exploiting smart technologies to build Smart Resilient Cities. In: Gardoni, P. (ed.) Smart Cities and the Role of Information and Communication Technology on achieving Sustainability and Resilience Book. Univ. Illinois - Taylor & Francis (2018).  https://doi.org/10.4324/9781315142074-35CrossRefGoogle Scholar
  2. 2.
    Tschiersch, I., Schael, T.: Concepts of human-centred systems. In: Brandt, D. (ed.) Human-Centred System Design. FIRST: PEOPLE, Second: Organization, third: Technology; 20 Case Reports, Aachener Reihe Mensch und Technik 42, pp. 97–107. Wissenschaftsverlag Mainz, Aachen (2003)Google Scholar
  3. 3.
    Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(4), 237–270 (2004)CrossRefGoogle Scholar
  4. 4.
    Mansfield, J.: The nature of change or the law of unintended consequences. An introductory text to designing complex systems and managing change. Imperial College Pr, London (2010)Google Scholar
  5. 5.
    Hollnagel, E.: Prologue: the scope of resilience engineering. In: Hollnagel, E., Pariès, J., Woods, D.D., Wreathall, J. (eds.) Resilience Engineering in Practice. A Guidebook. Ashgate Studies in Resilience Engineering, pp. xxix–xxxix. Ashgate, Aldershot (2011)Google Scholar
  6. 6.
    Leveson, N., Dulac, N., Marais, K., Carroll, J.: Moving beyond normal accidents and high reliability organizations: A systems approach to safety in complex systems. Organ. Stud. 30(2–3), 227–249 (2009)CrossRefGoogle Scholar
  7. 7.
    Jackson, S.: Architecting Resilient Systems. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  8. 8.
    Hollnagel, E.: Resilience – the challenge of the unstable. In: Hollnagel, E., Woods, D.D., Leveson, N. (eds.) Resilience engineering. Concepts and precepts, pp. 9–17. CRC Press, Ashgate, Aldershot (2006)CrossRefGoogle Scholar
  9. 9.
    Schneeweiss, C.: Distributed Decision Making. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24724-1CrossRefzbMATHGoogle Scholar
  10. 10.
    Crampin, T.: Human Factors in Control room Design: A Practical Guide for Project Managers and Senior Engineers. Wiley, Hoboken (2017)CrossRefGoogle Scholar
  11. 11.
    Bockelmann, M., Nachreiner, F., Nickel, P.: Bildschirmarbeit in Leitwarten. Handlungshilfen zur ergonomischen Gestaltung von Arbeitsplätzen nach der Bildschirmarbeitsverordnung; Forschung Projekt F 2249. Bundesanst. für Arbeitsschutz und Arbeitsmedizin, Dortmund, Berlin, Dresden ( 2012)Google Scholar
  12. 12.
    Carayon, P.: Human factors of complex sociotechnical systems. Appl. Ergon. 37(4), 525–535 (2006)CrossRefGoogle Scholar
  13. 13.
    Bellini, E., et al.: Towards resilience operationalization in Urban Transport System: the RESOLUTE project approach. In: Risk, Reliability and Safety: Innovating Theory and Practice - Proceedings of the 26th European Safety and Reliability Conference, ESREL 2016, p. 345 (2017)CrossRefGoogle Scholar
  14. 14.
    Bellini, E., Ceravolo, P., Nesi, P.: Quantify resilience enhancement of UTS through exploiting connected community and internet of everything emerging technologies. ACM Trans. Internet Technol 18(1), Article 7 (2017). 34 pages. 27.  https://doi.org/10.1145/3137572CrossRefGoogle Scholar
  15. 15.
    Bergroth, J.D., Koskinen, H.M.K., Laarni, J.O.: Use of immersive 3-D virtual reality environments in control room validations. Nuclear Technol. 202(2–3), 278–289 (2018).  https://doi.org/10.1080/00295450.2017.1420335CrossRefGoogle Scholar
  16. 16.
    Kotek, L., Tuma, Z., Blecha, P., Nemcova, Z., Habada, P.: Evaluation of human error of response to auditory and visual signals in the virtual realityGoogle Scholar
  17. 17.
    Silva, J.N.A., Southworth, M., Raptis, C., Silva, J.: Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl. Sci. 3(3), 420–430 (2018)CrossRefGoogle Scholar
  18. 18.
    Bellini, A., Bellini, E., Gherardelli, M., Pirri, F.: Enhancing IoT data dependability through a blockchain mirror model. Future Internet 11, 117 (2019)CrossRefGoogle Scholar
  19. 19.
    Bellini, E., Coconea, L., Nesi, P.: A functional resonance analysis method driven resilience quantification for socio-technical systems. IEEE Syst. J. (2019).  https://doi.org/10.1109/JSYST.2019.2905713CrossRefGoogle Scholar
  20. 20.
    Brotsis, S., et al.: Blockchain solutions for forensic evidence preservation in IoT environments. In: 2019 IEEE Conference on Network Softwarization (IEEE NetSoft) (2019)Google Scholar
  21. 21.
    Interplanetary File System (IPFS). https://ipfs.io/
  22. 22.
  23. 23.
  24. 24.
    Zeng, H., Zhao, Y.: Sensing Movement: microsensors for body motion measurement. Sens. (Basel) 11(1), 638–660 (2011)CrossRefGoogle Scholar
  25. 25.
    Bellini, E., Nesi, P., Pantaleo, G., Venturi, A.: Functional resonance analysis method based-decision support tool for urban transport system resilience management. In: Proceedings of IEEE 2nd International Smart Cities Conference: Improving the Citizens Quality of Life, ISC2 2016 (2016)Google Scholar
  26. 26.
    Shala, B., Trick, U., Lehmann, A., Ghita, B., Shiaeles, S.: Blockchain-based trust communities for decentralized M2M application services. In: Xhafa, F., Leu, F.-Y., Ficco, M., Yang, C.-T. (eds.) 3PGCIC 2018. LNDECT, vol. 24, pp. 62–73. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-02607-3_6CrossRefGoogle Scholar
  27. 27.
    Bendiab, K., Kolokotronis, N., Shiaeles, S., Boucherkha, S.: WiP: a novel blockchain-based trust model for cloud identity management. In: 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech) (2018).  https://doi.org/10.1109/dasc/picom/datacom/cyberscitec.2018.00126

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathema s.r.l.FlorenceItaly
  2. 2.Department of Information EngineeringUniversity of FlorenceFlorenceItaly
  3. 3.SWARCOTurinItaly
  4. 4.LOGOS Research and InnovationFlorenceItaly

Personalised recommendations