Skip to main content

Singular Perturbation Techniques and Asymptotic Expansions for Some Complex Enzyme Reactions

  • Conference paper
  • First Online:
Nonlinear Dynamics of Structures, Systems and Devices

Abstract

We summarize some recent results concerning the study of the asymptotic properties of four important enzyme reactions, which are ubiquitous in every intracellular enzyme reaction network. Mainly following the fundamental ideas by Nayfeh, after ad hoc adimensionalizations, we apply classical singular perturbation techniques in order to determine the matched expansions of the solutions, in terms of a suitable parameter, up to the first order. We show some numerical results, for the different mechanisms and different parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bersani, A.M., Dell’Acqua, G., Tomassetti, G.: On stationary states in the double phosphorylation-dephosphorylation cycle. In: AIP Conference Proceedings, vol. 1389(1), pp. 1208–1211 (2011)

    ADS  Google Scholar 

  2. Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 27(4), 659–684 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bersani, A., Borri, A., Milanesi, A., Vellucci, P.: Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics. Commun. Appl. Ind. Math. 8(1), 81–102 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bisswanger, H.: Enzyme Kinetics: Principles and Methods. Wiley, London (2017)

    Book  Google Scholar 

  5. Borghans, J., de Boer, R., Segel, L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  MATH  Google Scholar 

  6. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19(2), 338 (1925)

    Google Scholar 

  7. Ciliberto, A., Capuani, F., Tyson, J.J.: Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3(3), e45 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, vol. 510. Wiley-Blackwell Weinheim, Germany (2012)

    Google Scholar 

  9. Cornish-Bowden, A.: One hundred years of Michaelis–Menten kinetics. Perspect. Sci. 4, 3–9 (2015)

    Article  Google Scholar 

  10. Dell’Acqua, G., Bersani, A.M.: Bistability and the complex depletion paradox in the double phosphorylation-dephosphorylation cycle. In: BIOINFORMATICS, pp. 55–65 (2011)

    Google Scholar 

  11. Dell’Acqua, G., Bersani, A.M.: A perturbation solution of Michaelis–Menten kinetics in a “total” framework. J. Math. Chem. 50(5), 1136–1148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eilertsen, J., Schnell, S.: A kinetic analysis of coupled (or auxiliary) enzyme reactions. Bull. Math. Biol. 80(12), 3154–3183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. 78(11), 6840–6844 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. Henri, V.: Recherches sur la loi de l’action de la sucrase. CR Hebd. Acad. Sci. 133, 891–899 (1901)

    Google Scholar 

  15. Henri, V.: Über das gesetz der wirkung des invertins. Z. Phys. Chem. 39(1), 194–216 (1902)

    Google Scholar 

  16. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  ADS  Google Scholar 

  17. Michaelis, L., Menten, M.L.: The kinetics of the inversion effect. Biochem. Z 49, 333–369 (1913)

    Google Scholar 

  18. Murray, J.: Mathematical Biology: An Introduction. Springer, New York (2002)

    Book  MATH  Google Scholar 

  19. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  20. Palsson, B.O.: On the dynamics of the irreversible Michaelis–Menten reaction mechanism. Chem. Eng. Sci. 42(3), 447–458 (1987)

    Article  Google Scholar 

  21. Palsson, B.O., Lightfoot, E.N.: Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis–Menten kinetics. J. Theor. Biol. 111(2), 273–302 (1984)

    Article  Google Scholar 

  22. Palsson, B.O., Palsson, H., Lightfoot, E.N.: Mathematical modelling of dynamics and control in metabolic networks. iii. linear reaction sequences. J. Theor. Biol. 113(2), 231–259 (1985)

    Article  MathSciNet  Google Scholar 

  23. Pedersen, M.G., Bersani, A.M., Bersani, E.: Quasi steady-state approximations in complex intracellular signal transduction networks—a word of caution. J. Math. Chem. 43(4), 1318–1344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pedersen, M.G., Bersani, A.M.: Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60(2), 267–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pedersen, M.G., Bersani, A.M., Bersani, E.: The total quasi-steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol. 69(1), 433–457 (2006)

    Article  MATH  Google Scholar 

  26. Pedersen, M.G., Bersani, A.M., Bersani, E., Cortese, G.: The total quasi-steady-state approximation for complex enzyme reactions. Math. Comput. Simul. 79(4), 1010–1019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rubinow, S., Lebowitz, J.L.: Time-dependent Michaelis–Menten kinetics for an enzyme-substrate-inhibitor system. J. Am. Chem. Soc. 92(13), 3888–3893 (1970)

    Article  Google Scholar 

  28. Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. J. Theor. Biol. 250(1), 209–218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schnell, S., Mendoza, C.: Time-dependent closed form solutions for fully competitive enzyme reactions. Bull. Math. Biol. 62(2), 321–336 (2000)

    Article  MATH  Google Scholar 

  30. Schnell, S., Maini, P.: Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math. Comput. Model. 35(1–2), 137–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Steuer, R., Gross, T., Selbig, J., Blasius, B.: Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. 103(32), 11868–11873 (2006)

    Article  ADS  Google Scholar 

  32. Tzafriri, A., Edelman, E.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226(3), 303–313 (2004)

    Article  MathSciNet  Google Scholar 

  33. Tzafriri, A.R., Edelman, E.R.: Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. J. Theor. Biol. 245(4), 737–748 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Maria Bersani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bersani, A.M., Borri, A., Milanesi, A., Tomassetti, G., Vellucci, P. (2020). Singular Perturbation Techniques and Asymptotic Expansions for Some Complex Enzyme Reactions. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J., Stepan, G. (eds) Nonlinear Dynamics of Structures, Systems and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-34713-0_5

Download citation

Publish with us

Policies and ethics