Skip to main content

Modeling of the Hysteretic Behavior of Wire Rope Isolators Using a Novel Rate-Independent Model

  • Conference paper
  • First Online:
Nonlinear Dynamics of Structures, Systems and Devices

Abstract

This paper presents a novel rate-independent model to predict the hysteretic response of Wire Rope Isolators along their two principal transverse directions, namely Roll and Shear directions. Employing the proposed model, the device restoring force can be evaluated by solving an algebraic equation that requires a set of only five parameters directly related to specific graphical features of the hysteresis loop. To verify such a model, some experimental results, obtained during several experimental tests recently performed at the Department of Industrial Engineering of the University of Naples Federico II, are predicted analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko, J.M., Ni, Y.Q., Tian, Q.L.: Hysteretic behavior and empirical modeling of a wire-cable vibration isolator. Int. J. Anal. Exp. Modal Anal. 7(2), 111–127 (1992)

    Google Scholar 

  2. Demetriades, G.F., Constantinou, M.C., Reinhorn, A.M.: Study of wire rope systems for seismic protection of equipment in buildings. Eng. Struct. 15(5), 321–334 (1993)

    Article  Google Scholar 

  3. Ni, Y.Q., Ko, J.M., Wong, C.W., Zhan, S.: Modelling and identification of a wire-cable vibration isolator via a cyclic loading test. Part 1: experiments and model development. J. Syst. Control Eng. 213(3), 163–171 (1999)

    Article  Google Scholar 

  4. Ni, Y.Q., Ko, J.M., Wong, C.W., Zhan, S.: Modelling and identification of a wire-cable vibration isolator via a cyclic loading test. Part 2: identification and response prediction. J. Syst. Control Eng. 213(3), 173–182 (1999)

    Article  Google Scholar 

  5. Wang, H-X., Gong, X-S., Pan, F., Dang, X-J.: Experimental investigations on the dynamic behaviour of O-type wire-cable vibration isolators. Shock Vib. 2015, Article ID 869325, 12 pp. (2015)

    Google Scholar 

  6. Chang, C-M., Strano, S., Terzo, M.: Modelling of hysteresis in vibration control systems by means of the Bouc-Wen model. Shock Vib. 2016, Article ID 3424191, 14 pp. (2016)

    Google Scholar 

  7. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93(3), 1647–1669 (2018)

    Article  Google Scholar 

  8. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: An accurate and computationally efficient uniaxial phenomenological model for steel and fiber reinforced elastomeric bearings. Compos. Struct. 211, 196–212 (2019)

    Article  Google Scholar 

  9. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05022-5

    Article  Google Scholar 

  10. Vaiana, N., Spizzuoco, M., Serino, G.: Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling. Eng. Struct. 140, 498–514 (2017)

    Article  Google Scholar 

  11. Strano, S., Terzo, M.: Actuator dynamics compensation for real-time hybrid simulation: an adaptive approach by means of a nonlinear estimator. Nonlinear Dyn. 85(4), 2353–2368 (2016)

    Article  Google Scholar 

  12. Losanno, D., Madera Sierra, I.E., Spizzuoco, M., Marulanda, J., Thomson, P.: Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration. Compos. Struct. 212, 66–82 (2019)

    Article  Google Scholar 

  13. Madera Sierra, I.E., Losanno, D., Strano, S., Marulanda, J., Thomson, P.: Development and experimental shear behavior of HDR seismic isolators for low-rise residential buildings. Eng. Struct. 183, 894–906 (2019)

    Article  Google Scholar 

  14. Greco, F., Luciano, R., Serino, G., Vaiana, N.: A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures. Annals Solid Struct. Mech. 10, 17–29 (2018)

    Article  Google Scholar 

  15. Bouc, R.: Modele mathematique d’hysteresis. Acustica 24, 16–25 (1971)

    MATH  Google Scholar 

  16. Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. ASCE 102(2), 249–263 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Vaiana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaiana, N., Marmo, F., Sessa, S., Rosati, L. (2020). Modeling of the Hysteretic Behavior of Wire Rope Isolators Using a Novel Rate-Independent Model. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J., Stepan, G. (eds) Nonlinear Dynamics of Structures, Systems and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-34713-0_31

Download citation

Publish with us

Policies and ethics