Skip to main content

Stability Boundary Approximation of Periodic Dynamics

  • Conference paper
  • First Online:
Nonlinear Dynamics of Structures, Systems and Devices

Abstract

We develop here the method for obtaining approximate stability boundaries in the space of parameters for systems with parametric excitation. The monodromy (Floquet) matrix of linearized system is found by averaging method. For system with two degrees of freedom (DOF) we derive general approximate stability conditions. We study domains of stability with the use of fourth order approximations of monodromy matrix on example of inverted position of a pendulum with vertically oscillating pivot. Addition of small damping shifts the stability boundaries upwards, thus resulting in both stabilization and destabilization effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lyapunov regularity condition of the linear system holds when its matrix is periodic.

  2. 2.

    Periodic linear system is asymptotically stable if, and only if, it is exponentially stable. Exponential stability of \(\dot {x}(t)=\mathbf J(t)\, x(t)\) results in exponential stability, and hence asymptotic stability, of the nonlinear system solution y ≡ 0.

  3. 3.

    The expressions are derived by differentiating (5) w.r.t. time

    $$\displaystyle \begin{aligned}\dot{\mathbf Y}(t) = & \left(\dot{\mathbf U}_1(t) + \dot{\mathbf U}_2(t)+\cdots \right)\cdot \mathbf Z(t) + \left(\mathbf I + \mathbf U_1(t) + \mathbf U_2(t)+\cdots \right)\cdot \dot{\mathbf Z}(t), \end{aligned} $$

    substituting there expressions for time derivatives from (3) and (6)

    $$\displaystyle \begin{aligned} & \left(\mathbf H_1(t) + \mathbf H_2(t)+\cdots \right)\cdot \left(\mathbf I + \mathbf U_1(t) + \mathbf U_2(t)+\cdots \right)\cdot \mathbf Z \\ &\quad = \left(\dot{\mathbf U}_1(t) + \dot{\mathbf U}_2(t)+\cdots\right)\cdot\mathbf Z + \left(\mathbf I + \mathbf U_1(t) + \mathbf U_2(t)+\cdots \right) \cdot \left(\mathbf A_1 + \mathbf A_2+\cdots \right)\cdot\mathbf Z, \end{aligned} $$

    collecting there terms of the same order, and canceling non-degenerate matrix Z, which yield the following equalities:

    First order: \( \mathbf H_1(t) = \dot {\mathbf U}_1(t) + \mathbf A_1. \)

    Second order: \( \mathbf H_2(t) + \mathbf H_1(t)\cdot \mathbf U_1(t) = \dot {\mathbf U}_2(t) + \mathbf U_1(t)\cdot \mathbf A_1 + \mathbf A_2, \)

    Third order: \( \mathbf H_3(t) + \mathbf H_1(t)\cdot \mathbf U_2(t) + \mathbf H_2(t)\cdot \mathbf U_1(t) = \dot {\mathbf U}_3(t) + \mathbf U_2(t)\cdot \mathbf A_1 + \mathbf U_1(t)\cdot \mathbf A_2 + \mathbf A_3, \)

    Fourth order: \( \mathbf H_4(t) + \mathbf H_1(t)\cdot \mathbf U_3(t) + \mathbf H_2(t)\cdot \mathbf U_2(t)+ \mathbf H_3(t)\cdot \mathbf U_1(t) = \dot {\mathbf U}_4(t) + \mathbf U_3(t)\cdot \mathbf A_1 + \mathbf U_2(t)\cdot \mathbf A_2 + \mathbf U_1(t)\cdot \mathbf A_3 + \mathbf A_4 \), and so on.

References

  1. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Ecol. Norm. Super. 12, 47–88 (1883)

    Article  Google Scholar 

  2. Xu, X., Wiercigroch, M.: Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn. 47(1–3), 311–320 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Butikov, E.I.: A physically meaningful new approach to parametric excitation and attenuation of oscillations in nonlinear systems. Nonlinear Dyn. 88(4), 2609–2627 (2017)

    Article  Google Scholar 

  4. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-Linear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  5. Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. World Scientific, New Jersey (2003)

    Book  Google Scholar 

  6. Seyranian, A.A., Seyranian, A.P.: The stability of an inverted pendulum with a vibrating suspension point. J. Appl. Math. Mech. 70, 754–761 (2006)

    Article  MathSciNet  Google Scholar 

  7. Arkhipova, I.M., Luongo, A.: On the effect of damping on the stabilization of mechanical systems via parametric excitation. Zeitschrift für angewandte Mathematik und Physik 67(3), 69 (2016). https://doi.org/10.1007/s00033-016-0659-6

    Article  ADS  MathSciNet  Google Scholar 

  8. Belyakov, A.O.: Another mechanical model of parametrically excited pendulum and stabilization of its inverted equilibrium position. In: Proceedings of 8th European Nonlinear Dynamics Conference, ENOC 2014

    Google Scholar 

  9. Kuznetsov, S.P.: Dynamical Chaos. Physmatlit, Moscow (2006) (in Russian)

    Google Scholar 

  10. Yakubovich, V.A., Starzhinskii, V.M.: Parametric Resonance in Linear Systems. Nauka, Moscow (1987)

    Google Scholar 

  11. Arnold, V.I.: Ordinary Differential Equations. Springer, New York (1992)

    Google Scholar 

  12. Meissner, E.: Ueber Schüttelerscheinungen in Systemen mit periodisch veränderlicher Elastizität. Schweizerische Bauzeitung 72(11), 95–98 (1918)

    Google Scholar 

Download references

Acknowledgement

A.O. Belyakov received funding from the Russian Science Foundation grant 19-11-00223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton O. Belyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyakov, A.O., Seyranian, A.P. (2020). Stability Boundary Approximation of Periodic Dynamics. In: Lacarbonara, W., Balachandran, B., Ma, J., Tenreiro Machado, J., Stepan, G. (eds) Nonlinear Dynamics of Structures, Systems and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-34713-0_2

Download citation

Publish with us

Policies and ethics