Skip to main content

Carrageenans

  • Chapter
  • First Online:
Aquatic Biopolymers

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Carrageenans are the sulfated polysaccharides that are obtained from red algae. They are most commonly applied as gelling agents. They are made up of alternating disaccharide units of 1, 3 linked beta galactose linked to either 1,4 alpha galactopyranose or 3,6 anhydrogalactose. They are classified as either λ, κ, ι, ε, μ, depending on the degree of sulfation. The extraction process makes use of alkali, acids and salts and requires energy for heating and additional processes to recover and purify carrageenan from seaweed biomass. These are considered in evaluating the environmental impact of carrageenan production. Presently, carrageenan is more commonly used for its rheological properties as a gelling agent in food and other consumer goods. Some studies have also presented potential application as a bioactive compound and in renewable energy system components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chibata I, Tosa T, Sato T, Takata I (1987) Immobilization of cells in carrageenan. Methods Enzymol 135:189–198

    Article  CAS  Google Scholar 

  • Davidson RL (ed) (1980) Handbook of water-soluble gums. New York McGraw-Hill Book Co.

    Google Scholar 

  • Doyle JP, Giannouli P, Rudolph B, Morris ER (2010) Preparation, authentication, rheology and conformation of theta carrageenan. Carbohyd Polym 80:648–654

    Article  CAS  Google Scholar 

  • Eisses J (1952) The research of gelatinous substances in Indonesian seaweeds at the laboratory for chemical research. Bogor J Sci Res Indon 1:44–49

    CAS  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018—Meeting the sustainable development goals. Rome. CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Ferreira LG, Noseda MD, Goncalves AG, Ducati DRB, Fujii MT, Duarte MER (2012) Chemical structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta). Carbohyd Res 347:83–94

    Article  CAS  Google Scholar 

  • Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21:617–629

    Article  CAS  Google Scholar 

  • Ghani NAA, Othaman R, Ahmad A, Anuar FH, Hassan NH (2019) Impact of purification on iota carrageenan as solid polymer electrolyte. Arab J Chem 12:370–376

    Article  CAS  Google Scholar 

  • Ghosh A, Anand VKG, Seth A (2015) Life cycle impact assessment of seaweed based biostimulant production from onshore cultivated Kappaphycus alvarezii (Doty) Doty ex Silva—is it environmentally sustainable? Algal Res 12:513–521

    Article  Google Scholar 

  • Gonçalves AG, Ducatti DRB, Paranha RG, Duarte MER, Noseda MD (2005) Positional isomers of sulfated oligosaccharides obtained from agarans and carrageenans: preparation and capillary electrophoresis separation. Carbohydr Res 340:2123–2134

    Article  Google Scholar 

  • Graham HD (1977) Food colloids. AVI Publishing Co., Inc., Westport, Connecticut

    Google Scholar 

  • Iglauer S, Wu Y, Schuler P, Tang Y (2011) Goddard III WA. Dilute iota- and Kappa-Carrageenan Solutions with high viscosities in high salinity brines. J Petrol Sci Eng 75:304–311

    Article  CAS  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  CAS  Google Scholar 

  • Long J, Xu E, Xingfei, Wu Z, Wang F, Xu X, Jin Z, Jiao A, Zhan X (2016) Effect of chitosan molecular weight on the formation of chitosan- pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-k-carrageenan nanoparticles 202:49–58

    Google Scholar 

  • Luong JH (1985) Cell Immobilization in kappa carrageenan for ethanol production. Biotechnol Bioeng 27(12):1651–1661

    Article  Google Scholar 

  • Manuhara GJ, Praseptiangga D, Riyanto RA (2016) Extraction and characterization of refined K-carrageenan of red algae [Kappaphycus alvarezii (Doty ex P.C. Silva, 1996)] Originated from Karimun Jawa Islands. Aquat Procedia 7:106–111

    Article  Google Scholar 

  • Maruyama H, Tamauchi H, Hashimoto M, Nakano T (2005) Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. Int Arch Allergy Immunol 137:289–294

    Article  CAS  Google Scholar 

  • McHugh DJ (2003) A guide to seaweed industry FAO fisheries technical paper 441. Rome. Downloaded 5/1/2019, pp 1–6

    Google Scholar 

  • Moreira-Gonzalez AR, Fernandez-Garces R, Batista MG, Leon-Perez AR, Caballero YC, Garcia-Moya A, Fujii MT, Suarez-Alfonso AM (2019) Marine red algae from central-southern coast of Cuba. Reg Stud Mar Sci 25(100450):1–9

    Google Scholar 

  • Necas J, Bartosikova L (2013) Carrageenan: a review. Veterinarni Medicina 58(4):187–205

    Article  CAS  Google Scholar 

  • Sheath RG, Vis LM (2015) Red algae. Freshwater Algae of North America (Second Edition). Ecology and Classification pp 237–264

    Chapter  Google Scholar 

  • Smith HM (1905) The utilization of seaweeds in the United States. Bull US Bur Fish 24:169–171

    Google Scholar 

  • Souza HKS, Hilliou L, Bastos M, Goncalves MP (2011) Effect of molecular weight and chemical structure on thermal and rheological properties of gelling k/l-hybrid carrageenan solution. Carbohyd Polym 85(2):429–438

    Article  CAS  Google Scholar 

  • Souza RB, Frota AF, Silva J, Alves C, Neugebauer AZ, Pinteus S, Rodrigues JAG, Cordeiro EMS, de Almeida RR, Pedrosa R, Benevides NMB (2018) In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 112:1248–1256

    Article  CAS  Google Scholar 

  • Stanley N (1987) Production, properties and uses of carrageenan. FAO report, 1987, Rome

    Google Scholar 

  • Syrbe A, Bauer WJ, Klostermeyer H (1998) Polymer science concepts in dairy systems: an overview of milk protein and food hydrocolloid interaction. Int Dairy J 8:179–193

    Article  CAS  Google Scholar 

  • Talarico LB, Damonte EB (2007) Interference in dengue virus adsorption and uncoating by carrageenans. Virology 363:473–485

    Article  CAS  Google Scholar 

  • Tijssen RLM, Canabadv-Rochelle LS, Mellema M (2007) Gelation upon long storage of milk drinks with carrageenan. J Dairy Sci 90:2604–2611

    Article  CAS  Google Scholar 

  • Towle GA (1973) Carrageenan. In: Whistler RL (ed) Industrial gums, polysaccharides and their derivatives. Academic Press, New York, pp 83–114

    Chapter  Google Scholar 

  • Weiner ML, McKim JM, Blakemore WR (2017) Addendum to Weiner ML (2016) Parameters and pitfalls to consider in the conduct of food additive research, carrageenan as a case study. Food Chem Toxicol 107:208–214

    Article  CAS  Google Scholar 

  • Williams PA, Phillips GO (2003) GUMS: properties of individual gums. In: Caballero B (ed) Encyclopedia of food sciences and nutrition. Academic Press

    Google Scholar 

  • Yasin MA, Gad AAM, Ghanem AF, Rehim MHA (2019) Green synthesis of cellulose nanofibers using immobilized cellulase. Carbohydr Polym 205:255–260

    Article  Google Scholar 

  • Yuan H, Song J, Li X, Li N, Dai J (2006) Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett 243(2):228–234

    Article  CAS  Google Scholar 

  • Yuan H, Zhang W, Li X, Lu X, Li N, Gao X, Song J (2005) Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated and phosphorylated derivatives. Carbohyd Res 340(4):685–692

    Article  CAS  Google Scholar 

  • Yu G, Hu Y, Yang B, Zhao X, Wang P, Ji G, Wu J, Guan H (2010) Extraction, isolation and structural characterization of polysaccharides from a red alga Gloiopeltis furcata. J Ocean Univ China Nat Sci 9:193–197

    Article  CAS  Google Scholar 

  • Zaneveld JS (1959) The utilization of marine algae in tropical south and east Asia. Econ Bot 13(2):89–131

    Article  Google Scholar 

  • Zhou G, Sheng W, Yao W, Wang C (2006) Effect of low molecular [lambda]-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 53:129–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2020). Carrageenans. In: Aquatic Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-34709-3_6

Download citation

Publish with us

Policies and ethics