Skip to main content

Fucoidan

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Fucoidan is extracted from brown algae and echinoderms, most commonly, sea cucumber. It is a heteropolymer with fucose as its main repeating unit. However, a variety of monomers and functional groups are also present within its polymer chain. The presence of sulfate groups is attributed to many of its bioactive properties. The extracts are highly polydisperse; therefore, additional processes are often required to obtain fucoidan with uniform molecular weight. The molecular weight, degree of sulfation and monomeric unit vary significantly with species, extraction method and growth parameters of the organisms. This diversity of fucoidan also limits its pharmaceutical and biomedical applications. This chapter discusses the processes involved in fucoidan production, its chemical structure, environmental issues associated with fucoidan production, applications and industrial significance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alboofetileh M, Rezaei M, Tabarsa M, You S, Mariatti F, Cravotto G (2019) Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int J Biol Macromol 128:244–253

    Article  CAS  PubMed  Google Scholar 

  • Alghazwi M, Smid S, Karpiniec S, Zhang W (2019) Comparative study on neuroprotective activities of fucoidans from Fucus vesiculosus and Undaria pinnatifida. Int J Biol Macromol 122:255–264

    Article  CAS  PubMed  Google Scholar 

  • Alsac JM, Delbosc S, Rouer M, Journe C, Louedec L, Meilhac O, Michel JB (2013) Fucoidan interferes with Porphyromonas gingivalis-induced aneurysm enlargement by decreasing neutrophil activation. J Vasc Surg 57:796–805

    Article  PubMed  Google Scholar 

  • Alvarez-Vinas M, Florez-Fernandez N, Gonzalez-Munoz JM, Dominguez H (2019) Influence of molecular weight on the properties of Sargassum muticum fucoidan. Algal Res 38 (Article101393)

    Article  Google Scholar 

  • Azuma K, Ishihara T, Nakamoto H, Amaha T, Osaki T, Tsuka T, Imagawa T, Minami S, Takashima O, Ifuku S et al (2012) Effects of oral administration of fucoidan extracted from Cladosiphon okamuranus on tumor growth and survival time in a tumor-bearing mouse model. Mar Drugs 10:2337–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharides. Glycobiology 13:29–40

    Article  CAS  Google Scholar 

  • Bilan MI, Kusaykin MI, Grachev AA, Tsvetkova EA, Zvyagintseva TN, Nifantiev NE, Usov AI (2005) Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus. Biochemistry (Moscow) 70:1321–1326

    Article  CAS  Google Scholar 

  • Carvalho AC, Sousa RB, Franco AX, Costa JV, Neves LM, Ribeiro RA, Sutton R, Criddle DN, Soares PM, de Souza MH (2014) Protective effects of fucoidan, a p- and l-selectin inhibitor, in murine acute pancreatitis. Pancreas 43:82–87

    Article  CAS  PubMed  Google Scholar 

  • Chang Y (2010) Isolation and characterization of sea cucumber fucoidan utilizing marine bacterium. Lett Appl Microbiol 50(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Hu Y, Yu L, McClements DJ, Xu X, Liu G, Xue C (2015) Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2015.10.016

    Article  Google Scholar 

  • Chen S, Zhao Y, Zhang Y, Zhang D (2014) Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS ONE 9:e108157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YM, Tsai YH, Tsai TY, Chiu YS, Wei L, Chen WC, Huang CC (2015) Fucoidan supplementation improves exercise performance and exhibits anti-fatigue action in mice. Nutrients 7:239–252

    Article  CAS  Google Scholar 

  • Cho ML, Lee BY, You S (2011) Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 16:291–297

    Article  CAS  Google Scholar 

  • Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552

    Article  CAS  PubMed  Google Scholar 

  • Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohyd Polym 175:395–408. https://doi.org/10.1016/j.carbpol.2017.07.082

    Article  CAS  Google Scholar 

  • Dockal M, Ehrlich H, Scheiflinger F (2014) Methods and compositions for treating bleeding disorders. U.S. Patent 8,632,991

    Google Scholar 

  • Dürig J, Bruhn T, Zurborn K-H, Gutensohn K, Bruhn HD, Béress L (1997) Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 85:479–491

    Article  PubMed  Google Scholar 

  • Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM (2012) In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against newcastle disease virus. Virol J 9:307. https://doi.org/10.1186/1743-422X-9-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeelian B, Abbott CA, Le Leu RK, Benkendorff K (2014) 6-bromoisatin found in muricid mollusc extracts inhibits colon cancer cell proliferation and induces apoptosis, preventing early stage tumor formation in a colorectal cancer rodent model. Mar Drugs 12:17–35

    Article  CAS  Google Scholar 

  • Fitton J (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitton JH, Dell’Acqua G, Gardiner VA, Karpiniec SS, Stringer DN, Davis E (2015a) Topical benefits of two fucoidan-rich extracts from marine macroalgae. Cosmetics 2:66–81

    Article  CAS  Google Scholar 

  • Fitton JH, Stringer DN, Karpiniec SS (2015b) Therapies from fucoidan: an update. Mar Drugs 13:5920–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher HR, Biller P, Ross AB, Adams JMM (2017) The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res-Biomass Biofuels Bioprod 22:79–86

    Article  Google Scholar 

  • Gibson A, Edgar JD, Neville CE, Gilchrist SE, McKinley MC, Patterson CC, Young IS, Woodside JV (2012) Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr 96:1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Hahn T, Schulz M, Stadtmüller R, Zayed A, Muffler K, Lang S, Ulber R (2016) A cationic dye for the specific determination of sulfated polysaccharides. Anal Lett 49(12):1948–1962

    Article  CAS  Google Scholar 

  • Han YS, Lee JH, Jung JS, Noh H, Baek MJ, Ryu JM, Yoon YM, Han HJ, Lee SH (2015) Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine Hindlimb ischemia model. Int J Cardiol 198:187–195

    Article  PubMed  Google Scholar 

  • Hayashi K, Lee JB, Nakano T, Hayashi T (2013) Anti-influenza a virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect/Inst Pasteur 15:302–309

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Liu TJ (2012) Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater 8:1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Hwang PA, Yan MD, Kuo KL, Phan NN, Lin YC (2017) A mechanism of low molecular weight fucoidans degraded by enzymatic and acidic hydrolysis for the prevention of UVB damage. J Appl Phycol 29:521–529

    Article  CAS  Google Scholar 

  • Ikeguchi M, Yamamoto M, Arai Y, Maeta Y, Ashida K, Katano K, Miki Y, Kimura T (2011) Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett 2:319–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isnansetyo A, Lutfia LNF, Nursid M, Susidarti RA (2017) Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn J 9(1):14–20

    Article  CAS  Google Scholar 

  • Jeong HS, Venkatesan J, Kim SK (2013) Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 57(138–141):123

    Google Scholar 

  • Jin JO, Zhang W, Du JY, Wong KW, Oda T, Yu Q (2014) Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific t cell immune responses. PLoS ONE 9:e99396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jour TY, Purcell S, Hair C, Mills D (2012) Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities 368(369):68–81

    Google Scholar 

  • Kambhampati S, Park W, Habtezion A (2014) Pharmacologic therapy for acute pancreatitis. World J Gastroenterol 20:16868–16880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy S, Khan W, Kulshreshtha G, Evans F, Critchley AT, Fitton JH, Stringer DN, Gardiner VA, Prithiviraj B (2015) The fucose containing polymer (fcp) rich fraction of Ascophyllum nodosum (l.) le jol. Protects caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae 30:147–161

    Google Scholar 

  • Kannan RR, Arumugam R, Anantharaman P (2013) Pharmaceutical potential of a fucoidan-like sulphated polysaccharide isolated from Halodule pinifolia. Int J Biol Macromol 62:30–34

    Article  CAS  PubMed  Google Scholar 

  • Kasai A, Arafuka S, Koshiba N, Takahashi D, Toshima K (2015) Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Org Biomol Chem 13(42):10556–10568

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Jeon J, Lee JS (2014a) Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother Res 28:137–143

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Baek SH, Lee SH, Kim TH, Kim SY (2014b) Fucoidan, a sulfated polysaccharide, inhibits osteoclast differentiation and function by modulating rankl signaling. Int J Mol Sci 15:18840–18855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura R, Rokkaku T, Takeda S, Senba M, Mori N (2013) Cytotoxic effects of fucoidan nanoparticles against osteosarcoma. Mar Drugs 11:4267–4278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusaykin MI, Burtseva YV, Svetasheva TG, Sova VV, Zvyagintseva TN (2001) Distribution of o-glycosyl hydrolases in marine invertebrates. Enzymes of the marine mollusk Littorina kurila that catalyze fucoidan transformation. Biochemistry (Mosc) 68:317–324

    Google Scholar 

  • Kuznetsova TA, Besednova NN, Somova LM, Plekhova NG (2014) Fucoidan extracted from Fucus evanescens prevents endotoxin-induced damage in a mouse model of endotoxemia. Marine Drugs 12(2):886–898. https://doi.org/10.3390/md12020886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak JY (2014) Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 12:851–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kylin H (1913) Zur Biochemie der meeresalgen. Z Für Physiol Chemie 83:171–197

    Article  CAS  Google Scholar 

  • Lahrsen E, Liewert I, Alban S (2018) Gradual degradation of fucoidan from fucus vesiculosus and its effect on structures, antioxidant and antiproliferative activities. Carbohyd Polym 192:208–216

    Article  CAS  Google Scholar 

  • Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N (2015) Fucoidan extracts ameliorate acute colitis. PLoS ONE 10:e0128453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Jeong D, Na K (2013a) Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym 94:850–856

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Jeong MR, Choi SM, Na SS, Cha JD (2013b) Synergistic effect of fucoidan with antibiotics against oral pathogenic bacteria. Arch Oral Biol 58:482–492

    Article  CAS  PubMed  Google Scholar 

  • Le Visage C, Chaubet DLF, Autissier A (2015) Method for preparing porous scaffold for tissue engineering. U.S. Patent 9,028,857

    Google Scholar 

  • Liu S, Wang Q, Song Y, He Y, Ren D, Cong H, Wu L (2018) Studies on the hepatoprotective effect of fucoidan from brown algae Kjellmaniella crassifolia. Carbohyd Polym 193:298–306

    Article  CAS  Google Scholar 

  • Lu J, Shi KK, Chen S, Wang J, Hassouna A, White LN, Merien F, Xie M, Kong Q, Li J, Ying T, White LW, Nie S (2018) Fucoidan extracted from the New Zealand Undaria pinnatifida- physicochemical comparison against five other fucoidans: unique low molecular weight fraction bioactivity in breast cancer cell lines. Mar Drugs 16(461):1–25

    Google Scholar 

  • Manne BK, Getz TM, Hughes CE, Alshehri O, Dangelmaier C, Naik UP, Watson SP, Kunapuli SP (2013) Fucoidan is a novel platelet agonist for the c-type lectin-like receptor 2 (clec-2). J Biol Chem 288:7717–7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara K, Xue C, Zhao X, Mori M, Sugawara T, Hirata T (2005) Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells. Int J Mol Med 15:695–699

    CAS  PubMed  Google Scholar 

  • Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 75:263–280

    Article  CAS  PubMed  Google Scholar 

  • Min SK, Kwon OC, Lee S, Park KH, Kim JK (2011) An antithrombotic fucoidan, unlike heparin, does not prolong bleeding time in a murine arterial thrombosis model: a comparative study of Undaria pinnatifida sporophylls and Fucus vesiculosus. Phytother Res 26:752–757

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki Y, Iwaihara Y, Nakamizo M, Takeuchi S, Takeuchi H, Tachikawa D (2018) Potentiating effects of high-molecular weight fucoidan-agaricus mix (CUA) feeding on tumor vaccination. J Immunol 200(181):22–34

    Google Scholar 

  • Monagail MM, Cornish L, Morrison L, Araujo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52(4):371–390

    Article  Google Scholar 

  • Mori N1, Nakasone K, Tomimori K, Ishikawa C (2012) Beneficial effects of fucoidan in patients with chronic hepatitis C virus infection. World J Gastroenterol 18(18):2225–2230. https://doi.org/10.3748/wjg.v18.i18.2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao T, Kumabe A, Komatsu F, Yagi H, Suzuki H, Ohshiro T (2017) Gene identification and characterization of fucoidan deacetylase for potential application to fucoidan degradation and diversification. J Biosci Bioeng 124(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Nambisan P (1999) Seaweed biotechnology. Cyanobacterial and algal metabolism and environmental biotechnology, 236–246

    Google Scholar 

  • Negishi H, Mori M, Mori H, Yamori Y (2013) Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J Nutr 143:1794–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh R, Kim J, Lu W, Rosenthal D (2014) Anticancer effect of Fucoidan in combination with Tyrosine Kinase Inhibitor Lapatinib. Evid Based Complement Alternat Med. 865375. https://doi.org/10.1155/2014/865375

    Google Scholar 

  • Park SJ, Lee KW, Lim DS, Lee S (2012) The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev 21:2204–2211

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Wang Y, Wang Q, Luo X, He Y, Song Y (2018) Hypolipidermic effects of sulfated fucoidan from Kjellmaniella crassifolia through modulating the cholesterol and aliphatic metabolic pathways. J Funct Foods 51:8–15

    Article  CAS  Google Scholar 

  • Pereira J, Portron S, Dizier B, Vinatier C, Masson M, Sourice S, Galy-Fauroux I, Corre P, Weiss P, Fischer AM et al (2014) The in vitro and in vivo effects of a low-molecular-weight fucoidan on the osteogenic capacity of human adipose-derived stromal cells. Tissue Eng Part A 20:275–284

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro AC, Bourbon AI, Cerqueira MA, Maricato E, Nunes C, Coimbra MA, Vicente AA (2015) Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr Polym 115:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ponce NMA, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohyd Res 338:153–165

    Article  CAS  Google Scholar 

  • Qin Y, Yuan Q, Zhang Y, Li J, Zhu X, Zhao L, Wen J, Liu J, Zhao L, Zhao J (2018) Enzyme-assisted extraction optimization, characterization and antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus. Molecules 23(590):1–19

    Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2010) Fucoidan-degrading fungal strains: screening, morphometric evaluation, and influence of medium composition. Appl Biochem Biotechnol 162:2177–2188

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohyd Polym 86:1137–1144

    Article  CAS  Google Scholar 

  • Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ (2017) The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym 177:451–459

    Article  CAS  PubMed  Google Scholar 

  • Senthil L, Raghu C, Arjun HA, Anantharaman P (2019) In vitro and in silico inhibition properties of fucoidan against alpha-amylase and alpha-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohyd Polym 209:350–355

    Article  CAS  Google Scholar 

  • Shan L, Li J, Mao G, Yan L, Hu Y, Ye X, Tian D, Linhardt RJ, Chen S (2019) Effect of sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice. J Funct Foods 55:193–210

    Article  CAS  Google Scholar 

  • Sharma G, Kar S, Basu Ball W, Ghosh K, Das PK (2014) The curative effect of fucoidan on visceral leishmaniasis is mediated by activation of map kinases through specific protein kinase c isoforms. Cell Mol Immunol 11:263–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silchenko AS, Kusaykin MI, Kurilenko VV, Zakharenko AM, Isakov VV, Zaporozhets TS, Gazha AK, Zvyagintseva TN (2013) Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, formosa algae. Mar Drugs 11:2413–2430

    Article  PubMed  PubMed Central  Google Scholar 

  • Sim S, Shin Y, Kim H (2019) Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3 t3-L1 adipocytes. Nutr Res (in press)

    Google Scholar 

  • Sinurat E, Peranginangin R, Saepudin E (2015) Purification and characterization of fucoidan from the brown seaweed Sargassum binderi sonder. Squalen Bull Mar Fish Postharvest Biotechnol 10(2):79–87

    Article  Google Scholar 

  • Synytsya A, Bleha R, Synytsya A, Pohl R, Hayashi K, Yoshinaga K, Nakano T, Hayashi T (2014) Mekabu fucoidan: Structural complexity and defensive effects against avian influenza a viruses. Carbohydr Polym 111:633–644

    Article  CAS  PubMed  Google Scholar 

  • Tokita Y, Nakajima K, Mochida H, Iha M, Nagamine T (2010) Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by Sandwich ELISA. Biosci Biotechnol Biochem 74:350–357

    Article  CAS  PubMed  Google Scholar 

  • Trejo-Avila LM, Morales-Martinez ME, Ricque-Marie D, Cruz-Suarez LE, Zapata-Benavides P, Moran-Santibanez K, Rodriguez-Padilla C (2014) In vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. VirusDisease 25:474–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu H, Li N, Zhang Q, Zhang H (2014) The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar Drugs 12:3292–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weelden G, Bobinski M, Okla K, Weelden WJ, Romano A, Pijnenborg JMA (2019) Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs 17(32):1–30

    Google Scholar 

  • Wei X, Cai L, Liu H, Tu H, Xu X, Zhou F, Zhang L (2019) Chain conformation and biological activities of hyperbranced fucoidan derived from brown algae and its desulfated derivative. Carbohyd Polym 208:86–96

    Article  CAS  Google Scholar 

  • WHO (2014) Good manufacturing practices for pharmaceutical products: main principles. WHO technical report series no. 986

    Google Scholar 

  • Yuan Y, Macquarrie D (2015) Microwave assisted extraction of sulfated polysaccharides (fucoidan) from ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 129:101–107

    Article  CAS  PubMed  Google Scholar 

  • Zayed A, Ulber R (2019) Fucoidan production: approval key challenges and opportunities. Carbohyd Polym 211:289–297

    Article  CAS  Google Scholar 

  • Zhang W, Du JY, Jiang Z, Okimura T, Oda T, Yu Q, Jin JO (2014a) Ascophyllan purified from Ascophyllum nodosum induces th1 and tc1 immune responses by promoting dendritic cell maturation. Mar Drugs 12:4148–4164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Till S, Jiang C, Knappe S, Reutterer S, Scheiflinger F, Szabo CM, Dockal M (2014b) Structure-activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb Haemost 111:429–437

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zheng Y, Wang J, Ma S, Yu Y, White WL, Yang S, Yang F, Lu J (2018) Fucoidan extracted from Undaria pinnatifida: source for nutraceuticals/functional foods. Mar Drugs 16(321):1–17

    Google Scholar 

  • Zuo T, Li X, Chang Y, Duan G, Yu L, Zheng R, Xue C, Tang Q (2015) Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food Funct 6:415–422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olatunji, O. (2020). Fucoidan. In: Aquatic Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-34709-3_5

Download citation

Publish with us

Policies and ethics