Skip to main content

Global Properties of a Diffusive HBV Infection Model with Cell-to-Cell Transmission and Three Distributed Delays

  • Chapter
  • First Online:
Disease Prevention and Health Promotion in Developing Countries

Abstract

In this chapter, we develop a mathematical model for hepatitis B virus (HBV) infection with two modes of transmission, spatial diffusion for both HBV DNA-containing capsids and viruses, and three distributed delays. The first delay is for the production of productively infected hepatocytes, the second for the production of matured capsids and the third for the production of matured virions with the corresponding probabilities of survival. The global properties of the model are explored. Furthermore, an application of our main results is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribeiro RM, Lo A, Perelson AS (2002) Dynamics of hepatitis B virus infection. Microbes Infect 4(8):829–835

    Article  Google Scholar 

  2. WHO (2018) Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

  3. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 93(9):4398–4402

    Article  Google Scholar 

  4. Min L, Su Y, Kuang Y (2008) Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mt J Math 38(5):1573–1585

    Article  MathSciNet  MATH  Google Scholar 

  5. Gourley SA, Kuang Y, Nagy JD (2008) Dynamics of a delay differential equation model of hepatitis B virus infection. J Biol Dyn 2(2):140–153

    Article  MathSciNet  MATH  Google Scholar 

  6. Li J, Wang K, Yang Y (2011) Dynamical behaviors of an HBV infection model with logistic hepatocyte growth. Math Comput Model 54(1–2):704–711

    Article  MathSciNet  MATH  Google Scholar 

  7. Eikenberry S, Hews S, Nagy JD, Kuang Y (2009) The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Math Biosci Eng 6(2):283–299

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang K, Fan A, Torres A (2010) Global properties of an improved hepatitis B virus model. Nonlinear Anal: Real World Appl 11(4):3131–3138

    Article  MathSciNet  MATH  Google Scholar 

  9. Hews S, Eikenberry S, Nagy JD, Kuang Y (2010) Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J Math Biol 60(4):573–590

    Article  MathSciNet  MATH  Google Scholar 

  10. Yousfi N, Hattaf K, Tridane A (2011) Modeling the adaptive immune response in HBV infection. J Math Biol 63(5):933–957

    Article  MathSciNet  MATH  Google Scholar 

  11. Pang J, Cui J, Hui J (2012) The importance of immune responses in a model of hepatitis B virus. Nonlinear Dyn 67(1):723–734

    Article  MathSciNet  MATH  Google Scholar 

  12. Manna K, Chakrabarty SP (2015) Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun Nonlinear Sci Numer Simul 22(1–3):383–395

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang J, Tian X (2013) Global stability of a delay differential equation of hepatitis B virus infection with immune response. Electron J Differ Equ 94:1–11

    MathSciNet  MATH  Google Scholar 

  14. Manna K, Chakrabarty SP (2017) Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids. Comput Appl Math 36(1):525–536

    Article  MathSciNet  MATH  Google Scholar 

  15. Manna K (2017) Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response. Int J Appl Comput Math 3(3):2323–2338

    Article  MathSciNet  MATH  Google Scholar 

  16. Bachraoui M, Hattaf K, Yousfi N (2019) Dynamics of a fractional order HBV infection model with capsids and CTL immune response. Commun Math Biol Neurosci 6:1–15

    Google Scholar 

  17. Britton NF (2003) Essential mathematical biology. Springer, London

    Book  MATH  Google Scholar 

  18. Funk GA, Jansen VAA, Bonhoeffer S, Killingback T (2005) Spatial models of virus-immune dynamics. J Theor Biol 233(2):221–236

    Article  MathSciNet  Google Scholar 

  19. Wang K, Wang W (2007) Propagation of HBV with spatial dependence. Math Biosci 210(1):78–95

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang K, Wang W, Song S (2008) Dynamics of an HBV model with diffusion and delay. J Theor Biol 253(1):36–44

    Article  MathSciNet  MATH  Google Scholar 

  21. Gan Q, Xu R, Yang P, Wu Z (2010) Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J Appl Math 75(3):392–417

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu R, Ma Z (2009) An HBV model with diffusion and time delay. J Theor Biol 257(3):499–509

    Article  MathSciNet  MATH  Google Scholar 

  23. Chí NC, Vales EÁ, Almeida GG (2012) Analysis of a HBV model with diffusion and time delay. J Appl Math 2012:1–25

    MathSciNet  Google Scholar 

  24. Zhang Y, Xu Z (2014) Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response. Nonlinear Anal: Real World Appl 15:118–139

    Article  MathSciNet  MATH  Google Scholar 

  25. Hattaf K, Yousfi N (2015) A generalized HBV model with diffusion and two delays. Comput Math Appl 69(1):31–40

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaoli W, Xinlong F, Yinnian H (2011) Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence. Acta Math Sci 31(5):1959–1967

    Article  MathSciNet  Google Scholar 

  27. Manna K, Chakrabarty SP (2015) Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids. J Differ Equ Appl 21(10):918–933

    Article  MathSciNet  MATH  Google Scholar 

  28. Manna K (2017) Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int J Biomath 10(5):1–18

    Article  MathSciNet  MATH  Google Scholar 

  29. Hattaf K, Yousfi N (2013) Global stability for reaction-diffusion equations in biology. Comput Math Appl 66(8):1488–1497

    Article  MathSciNet  MATH  Google Scholar 

  30. Hattaf K, Yousfi N (2015) Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response. Comput Appl Math 34(3):807–818

    Article  MathSciNet  MATH  Google Scholar 

  31. Guo T, Liu H, Xu C, Yan F (2018) Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discret Contin Dyn Syst-B 23(10):4223–4242

    MathSciNet  MATH  Google Scholar 

  32. Geng Y, Xu J, Hou J (2018) Discretization and dynamic consistency of a delayed and diffusive viral infection model. Appl Math Comput 316:282–295

    MathSciNet  MATH  Google Scholar 

  33. Manna K, Hattaf K (2019) Spatiotemporal dynamics of a generalized HBV infection model with capsids and adaptive immunity. Int J Appl Comput Math 5(3):1–29

    MathSciNet  MATH  Google Scholar 

  34. Mothes W, Sherer NM, Jin J, Zhong P (2010) Virus cell-to-cell transmission. J Virol 84:8360–8368

    Article  Google Scholar 

  35. Zhong P, Agosto LM, Munro JB, Mothes W (2013) Cell-to-cell transmission of viruses. Curr Opin Virol 3:44–50

    Article  Google Scholar 

  36. Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6:815–826

    Article  Google Scholar 

  37. Hattaf K, Yousfi N (2016) A generalized virus dynamics model with cell-to-cell transmission and cure rate. Adv Differ Equ 2016(1):174

    Article  MathSciNet  MATH  Google Scholar 

  38. Hattaf K, Yousfi (2018) Qualitative analysis of a generalized virus dynamics model with both modes of transmission and distributed delays. Int J Differ Equ 2018:1–7

    Google Scholar 

  39. Hattaf K (2019) Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response. Computation 7(2):1–16

    Article  Google Scholar 

  40. Hattaf K, Yousfi N (2016) A numerical method for a delayed viral infection model with general incidence rate. J King Saud Univ-Sci 28(4):368–374

    Article  MATH  Google Scholar 

  41. Wang XY, Hattaf K, Huo HF, Xiang H (2016) Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. J Ind Manag Optim 12(4):1267–1285

    Article  MathSciNet  MATH  Google Scholar 

  42. Travis CC, Webb GF (1974) Existence and stability for partial functional differential equations. Trans Am Math Soc 200:395–418

    Article  MathSciNet  MATH  Google Scholar 

  43. Fitzgibbon WE (1978) Semilinear functional differential equations in Banach space. J Differ Equ 29:1–14

    Article  MathSciNet  MATH  Google Scholar 

  44. Martin RH, Smith HL (1990) Abstract functional differential equations and reaction-diffusion systems. Trans Am Math Soc 321:1–44

    MathSciNet  MATH  Google Scholar 

  45. Martin RH, Smith HL (1991) Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. J für die reine und angew Math 413:1–35

    MathSciNet  MATH  Google Scholar 

  46. Wu J (1996) Theory and applications of partial functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  47. Henry D (1981) Geometric theory of semilinear parabolic equations lecture notes in mathematics, vol. 840. Springer, Berlin

    Google Scholar 

  48. Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hattaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hattaf, K., Yousfi, N. (2020). Global Properties of a Diffusive HBV Infection Model with Cell-to-Cell Transmission and Three Distributed Delays. In: Boutayeb, A. (eds) Disease Prevention and Health Promotion in Developing Countries. Springer, Cham. https://doi.org/10.1007/978-3-030-34702-4_10

Download citation

Publish with us

Policies and ethics