Skip to main content

Genetic Improvement of Oil Quality Using Molecular Techniques in Brassica juncea

  • Chapter
  • First Online:
Brassica Improvement

Abstract

Oil quality is a complex character determined by several inter-reliant indices, such as nutritional, cooking parameters, consumer preference, palatability, industrial suitability, physical appearance, and shelf life. Rapeseed-mustard oil has the lowest concentration (~7%) of saturated fatty acids (SAFAs) and a substantial amount of polyunsaturated fatty acids (PUFAs). The presence of the high amount of PUFAs does not mitigate the detrimental effects of the presence of high erucic acid (~22–52%) and low amount of oleic acid (~8–23%) in mustard oil. Whereas the excessive intake of erucic acid causes diseases like myocardial fibrosis in adults and lipidosis in children, the lower levels of oleic acid decrease oxidative stability, resulting in the reduction of the shelf life and thermostability of the oil. The mustard oil cake provides better amino acid composition than soybean meal to monogastric digestive tracts; however, it’s use as animal feed is restricted due to the presence of high content of sulfur-rich glucosinolates which yield toxic and goitrogenic cleavage products. The α-tocopherol is biologically the most active form of vitamin E, and Brassica oil has low α-tocopherol. Therefore, enhancing oil quality by altering the composition of Brassica oil either by increasing the oleic acid and α-tocopherol or by decreasing the erucic acid and glucosinolate content is the important breeding objectives. The latest molecular discoveries decipher the biosynthesis pathways of the molecules and help in altering the compositions. This chapter reviews the molecular interventions employed in enhancing the mustard oil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackman RG, Eaton CA, Sipos JC, Loew FM, Hancock D (1977) A comparison of fatty acids from high levels of docosenoic acids of rapeseed oil (erucic acid) and of partially hydrogenated fish oil (primarily cetoleic acid) in a non-human primate species in a short-term exploratory study. Bibl Nutr Dieta 25:170–185

    CAS  Google Scholar 

  • Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia V, Alok A (2014) Molecular marker analysis of the linkage drag around the FAE1 loci of Brassica juncea during conventional backcross breeding. J Crop Sci Biotechnol 17:147–154

    Article  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421

    Article  CAS  PubMed  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J GenGenomics 37:231–240

    CAS  Google Scholar 

  • Cao S, Zhou XR, Wood CC, Green AG, Singh SP, Liu L, Liu Q (2013) A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan JS, Bhadauria VP, Singh M, Singh KH, Kumar A (2007) Quality characteristics and their interrelationships in Indian rapeseed-mustard (Brassica sp.) varieties. Indian J Agric Sci 77:616–620

    CAS  Google Scholar 

  • Chauhan JS, Singh KH, Singh VV, Kumar S (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci 81:1093–1109

    Google Scholar 

  • Chiron H, Wilmer J, Lucas MO, Nesi N, Delseny M, Devic M, Roscoe TJ (2015) Regulation of FATTY ACIDELONGATION 1 expression in embryonic and vascular tissues of Brassica napus. Plant Mol Biol 88:65–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162:245–250

    Article  CAS  Google Scholar 

  • Downey RK (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can J Plant Sci 44(3):295

    Article  CAS  Google Scholar 

  • Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475–478

    Article  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    Article  CAS  PubMed  Google Scholar 

  • Engel E, Baty C, le Corre D, Souchon I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467

    Article  CAS  PubMed  Google Scholar 

  • Fenwick GR, Griffiths NM, Heaney RK (1983) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. J Sci Food Agric 34:73–80

    Article  CAS  Google Scholar 

  • Fourmann M, Barr P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to ArabidopsisFAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Friedt W, Snowdon R (2009) Oilseed rape. In: Vollmann J, Rajcan I (eds) Oil crops, handbook of plant breeding. Springer, New York, p 92

    Google Scholar 

  • Fritsche S, Wang X, Li J, Stich B, Kopisch-Obuch FJ, Endrigkeit J, Leckband G, Dreyer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukai E, Karim MM, Shea DJ, Tonu NN, Falk KC, Funaki T, Okazaki K (2019) An LTR retrotransposon insertion was the cause of world’s first low erucic acid Brassica rapa oilseed cultivar. Mol Breed 39(15):15–27

    Google Scholar 

  • Ge Y, Chang Y, Xu WL, Cui CS, Qu SP (2015) Sequence variations in the FAD2 gene in seeded pumpkins. GenMol Res 14:17482–17488

    CAS  Google Scholar 

  • Getinet A, Rakow G, Raney JP, Downey RK (1997) The inheritance of erucic acid content in Ethiopian mustard. Can J Plant Sci 77:33–41

    Google Scholar 

  • Gland A (1985) Inheritance of content and pattern of glucosinolates in combinations of resynthesized rapeseed x rapeseed cultivars. In: Sørensen H (ed) Advances in the production and utilization of cruciferous crops. Martinus Nijhoff/Dr W Junk Publ, Boston, pp 278–285

    Google Scholar 

  • Goffman FD, Becker HC (1999) Inheritance of tocopherol contents in seeds of rapeseed (Brassica napus L.). In: Proceedings of 10th rapeseed congress, China

    Google Scholar 

  • Goffman FD, Becker HC (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica napus L. Euphytica 125:189–196

    Article  CAS  Google Scholar 

  • Gopalan C, Krishnamurthi D, Shenolikar IS, Krishnamachari KA (1974) Myocardial changes in monkeys fed mustard oil. Ann Nutr Metab 16:352–365

    Article  CAS  Google Scholar 

  • Griffiths DW, Birch AN, Hillman JR (1998) Antinutritional compounds in the brassica analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 73:1–18

    Article  CAS  Google Scholar 

  • Griffiths DW, Deighton N, Birch AN, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693–700

    Article  CAS  PubMed  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Guan LL, Wang YB, Shen H, Hou K, Xu YW, Wu W (2012) Molecular cloning and expression analysis of genes encoding two microsomal oleate desaturases (FAD2) from safflower (Carthamus tinctorius L.). Plant Mol Biol Rep 30:139–148

    Article  CAS  Google Scholar 

  • Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Sangha MK, Kaur G, Banga S, Gupta M, Kumar H, Banga SS (2015) QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239

    Article  CAS  PubMed  Google Scholar 

  • Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus). Can J Plant Sci 44:104–111

    Article  CAS  Google Scholar 

  • Herńndez ML, Padilla MN, Mancha M, Martinez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57:6199–6206

    Article  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Booth Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid [omega]-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C (2009) Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol 10:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagannath A, Sodhi YS, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma PK, Pradhan AK, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59:2043–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim MM, Tonu NN, Hossain MS, Funaki T, Meah MB, Hossain DM, Asadud-doullah M, Fukai E, Okazaki K (2016) Marker-assisted selection of low erucic acid quantity in short duration Brassica rapa. Euphytica 208:535–544

    Article  Google Scholar 

  • Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269:5625–5631

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Barton DL, Giblin EM, Reed DW, Kumar A, Taylor DC (2004) Gaining insight into the role of serine 282 in B. napusFAE1 condensing enzyme. FEBS Lett 562:118–124

    Article  CAS  PubMed  Google Scholar 

  • Khadake RM, Ranjekar PK, Harsulkar AM (2009) Cloning of a novel omega-6 desaturase from flax (Linum usitatissimum L.) and its functional analysis in Saccharomyces cerevisiae. Mol Biotechnol 42:168–174

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Li X, Kim SJ, Kim H, Lee J, Kim H, Park S (2013) MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 18:8682–8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Kirk JT, Hurlstone CJ (1983) Variation and inheritance of erucic acid content in Brassica juncea. Z Pflanzenzuchtg 90:331–338

    CAS  Google Scholar 

  • Kirk JT, Oram RN (1981) Isolation of erucic acid free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Aust Inst Agric Sci 47:51–52

    CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondra ZP, Thomas PM (1974) Inheritance of oleic, linoleic and linolenic acids in seed oil of rapeseed (Brassica napus). Can J Plant Sci 55:205–210

    Article  Google Scholar 

  • Kongcharoensuntorn W (2001) Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene. Ph.D. thesis, University of North Texas, Denton, p 162

    Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KR, Sohn SI, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU (2013) Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 531:253–262

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Park W, Kim KS, Jang YS, Lee JE, Cha YL, Moon YH, Song YS, Lee K (2018) EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.). Euphytica 214:28

    Article  CAS  Google Scholar 

  • Lethenborg P, Li PW, Sørensen H, Hill J, Stølen O, Rahman MH, Poulsen MH (1995) Inheritance of glucosinolates in oilseed rape. In: Proceedings of 9th international rapeseed congress (GCIRC), Cambridge, pp 726–728

    Google Scholar 

  • Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Li D, Lei Z, Xue J, Zhou G, Hang Y, Sun X (2017) Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella. Planta 246:763–778

    Article  CAS  PubMed  Google Scholar 

  • Liao P, Chen X, Wang M, Bach TJ, Chye ML (2018) Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE 1 in transgenic tomato. Plant Biotechnol J 16:784–796

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2-1 fatty acid desaturase 5′ UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102

    Article  CAS  PubMed  Google Scholar 

  • Love HK, Rakow G, Raney JP, Downey RK (1990) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Can J Plant Sci 70:425–429

    Article  CAS  Google Scholar 

  • Lühs WW, Voss A, Seyis F, Friedt W (1999) Molecular genetics of erucic acid content in the genus Brassica. In: Proceedings of 10th rapeseed congress, Canberra, pp 26–29

    Google Scholar 

  • Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet 107:283–290

    Article  CAS  PubMed  Google Scholar 

  • Marwede V, Gul MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26

    Article  CAS  Google Scholar 

  • Matthaus B, Özcan MM, Al Juhaimi F (2016) Fatty acid composition and tocopherol content of the kernel oil from apricot varieties (Hasanbey, Hacihaliloglu, Kabaasi and Soganci) collected at different harvest times. Eur Food Res Technol 242:221–226

    Article  CAS  Google Scholar 

  • Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136:2665–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkilineni V, Rocheford T (2003) Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet 106:1326–1332

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  CAS  PubMed  Google Scholar 

  • Mithen R (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. In: Breeding for disease resistance. Springer, Dordrecht, pp 71–83

    Chapter  Google Scholar 

  • Mithen R (2001) Glucosinolates–biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Mortuza MG, Dutta PC, Das ML (2006) Erucic acid content in some rapeseed/mustard cultivars developed in Bangladesh. J Sci Food Agric 86:135–139

    Article  CAS  Google Scholar 

  • Müller R, De Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J ChemEcol 36:905–913

    Google Scholar 

  • Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531

    Article  CAS  PubMed  Google Scholar 

  • Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen CE, Andersen JS, Seynnaeve D, Verhoye T, Fulawka R, Denolf P, Halkier BA (2017) Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat Biotechnol 35:377

    Article  CAS  PubMed  Google Scholar 

  • O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids 32:687–695

    Article  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Olivieri AM, Parrini P (1986) Relationship between glucosinolate content and yield components in rapeseed. Cruciferae Newslett 11:126–127

    Google Scholar 

  • Pandey S, Kabdal M, Tripathi MK (2013) Study of inheritance of erucic acid in Indian mustard (Brassica juncea L. Czern & Coss). Octa. J Biosci 1:77–84

    CAS  Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul NK, Johnston TD, Eagles CF (1986) Inheritance of S-methyl-L-cysteine sulphoxide and thiocyanate contents in forage rape (Brassica napus L.). Theor Appl Genet 72:706–709

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325

    Article  CAS  PubMed  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochem Biophys Acta 1522:122–129

    CAS  PubMed  Google Scholar 

  • Pushpa HD, Yadava DK, Singh N, Vasudev S, Saini N, Muthusamy V, Prabhu KV (2016) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet 76:64–68

    CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Renard S, Mcgregor S (1992) Antithrombogenic effect of erucic acid poor rapeseed oil in the rats. Rev Fr Crop Cros 23:393–396

    Google Scholar 

  • Rodman JE, Karol KG, Price RA, Sytsma KJ (1996) Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst Bot 21:289–307

    Article  Google Scholar 

  • Rolletschek H, Borisjuk L, Sánchez-García A, Gotor C, Romero LC, Martínez-Rivas JM, Mancha M (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot 58:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutations in the fatty acid elongation 1 gene are associated with a loss of β-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111

    Article  CAS  PubMed  Google Scholar 

  • Rout K, Sharma M, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2015) Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi‑parental mapping populations. Theor Appl Genet 128:657–666

    Google Scholar 

  • Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in I: analysis in multiple bi-parental populations in high and ‘0’erucic background. Front Plant Sci 9:1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava DK (2016) Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breed Sci 66:831–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini N, Yashpal, Koramutla MK, Singh N, Singh S, Singh R, Yadav S, Bhattacharya R, Vasudev S, Yadava DK (2019) Promoter polymorphism in FAE1. 1 and FAE1. 2 genes associated with erucic acid content in Brassica juncea. Mol Breed 39:75

    Google Scholar 

  • Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IA, Lühs W, Lydiate DJ, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591

    Article  CAS  Google Scholar 

  • Schierholt A, Becker HC, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901

    Article  CAS  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Yadava DK, Vasudev S, Singh N, Muthusamy V, Prabhu KV (2015) Inheritance of low erucic acid in Indian mustard [Brassica juncea (L.) Czern. And Coss.]. Indian J GenPlant Breed 75:264–266

    Article  CAS  Google Scholar 

  • Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed 13:365–375

    Article  CAS  Google Scholar 

  • Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D, Pradhan AK (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511

    Article  CAS  Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 456–527

    Google Scholar 

  • Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic GSLs. PLoS One 2:e1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  CAS  PubMed  Google Scholar 

  • Stefansson BR, Hougen FW (1964) Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can J Plant Sci 44:359–364

    Article  CAS  Google Scholar 

  • Stefansson BR, Hougen FW, Downey RK (1961) Note on the isolation of rape plants with seed oil free from erucic acid. Can J Plant Sci 41:218–219

    Article  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vilkki H (1996) Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 92:952–956

    Article  PubMed  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vihinen M (1998) Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed 4:543–550

    Article  Google Scholar 

  • Thormann CE, Romero J, Mant J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Wei F, Shu H, Zhang Q, Zang X, Lian Y (2011) Decreasing erucic acid level by RNAi-mediated silencing of fatty acid elongase 1 (BnFAE1. 1) in rapeseeds (Brassica napus L.). AfricN. J Biotechnol 10:13194–13201

    CAS  Google Scholar 

  • Vageeshbabu HS, Chopra VL (1997) Genetic and biotechnological approaches for reducing glucosinolates from rapeseed-mustard meal. J Plant Biochem Biotechnol 6:53–62

    Article  CAS  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ (2006) The Arabidopsis vitamin E pathway gene 5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 103:79–129

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Perry SE (2013) Identification of direct targets of FUSCA3 a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J (2010) Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biol 10:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells R, Trick M, Soumpourou E, Clissold L, Morgan C, Werner P, Gibbard C, Clarke M, Jennaway R, Bancroft I (2014) The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol Breed 33:349–362

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Xiao L, Wu G, Lu C (2007) Cloning of fatty acid elongase 1 gene and molecular identification of A and C genome in Brassica species. Sci China C Life Sci 50:343–349

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu Y, Xiao L, Li X, Lu C (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Huang Z, Ma C, Xiao E, Zhang X, Tu J, Fu T (2010) FAE1 sequence characteristics and its relationship with erucic acid content in Brassica juncea. Acta Agron Sin 36:794–800

    Article  CAS  Google Scholar 

  • Xu J, Nwafor CC, Shah N, Zhou Y, Zhang C (2019) Identification of genetic variation in Brassica napus seeds for tocopherol content and composition using near-infrared spectroscopy technique. Plant Breed 16:1

    Google Scholar 

  • Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H (2005) High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11:231–235

    Article  CAS  Google Scholar 

  • Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Li D, Cai M, Gao G, Chen B, Xu K, Li J, Li F, Wang N, Qiao J, Li H (2015) Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L. Breed Sci 65:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125:715–729

    Article  CAS  PubMed  Google Scholar 

  • Yashpal, Vasudev S, Singh N, Yadava DK (2018) Oil-quality enhancement of rapeseed mustard: significance, achievements and future challenges. Indian Farming 68:9–12

    Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Michael MT, Govindjee R (2010) Overexpression of c-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochem Biophys Acta 1797:1428–1438

    CAS  PubMed  Google Scholar 

  • Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Cheng B (2014) Transposable element insertion and epigenetic modification cause the multiallelic variation in the expression of FAE1 in Sinapis alba. Plant Cell 26:2648–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y (2019) A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Plant Biotechnol J 17:2313–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zukalová H, Vasak J (2002) The role and effects of glucosinolates of Brassica species-a review. Rostlinna Vyroba 48:175–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yashpal et al. (2020). Genetic Improvement of Oil Quality Using Molecular Techniques in Brassica juncea. In: Wani, S., Thakur, A., Jeshima Khan, Y. (eds) Brassica Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-34694-2_6

Download citation

Publish with us

Policies and ethics