Skip to main content

Transgenic Approaches for Improvement of Brassica Species

  • Chapter
  • First Online:
Brassica Improvement

Abstract

Brassicaceae family includes a large number of commercially important plants, which are oilseed crops, vegetables, forage crops and are used in the production of condiments. Among the Brassica crops, oilseeds have the highest economic value and thus have garnered much importance for their improvement by biotechnological methods. This chapter explores the different transgenic and non-transgenic approaches that have been used for the improvement of Brassica species.

All the authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Yadav D, Shukla P, Vineeth TV, Sharma PC, Kirti PB (2017) Constitutive expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and glucose and ABA insensitivity in mustard transgenic plants. Plant Sci 265:12–28

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Overexpression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front Plant Sci 8:1693

    Article  PubMed  PubMed Central  Google Scholar 

  • Aneja JK, Agnihotri A (2013) Alternaria blight of oilseed Brassicas: epidemiology and disease control strategies with special reference to use of biotechnological approaches for attaining host resistance. J Oilseed Brassica 4(1):1–10

    Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Augustine R, Bisht NC (2015) Biofortification of oilseed Brassica juncea with the anti-cancer glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 5:18005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Bairwa SK, Godara SL, Meena S (2015) In vitro efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of stem rot in Indian Mustard (Brassica juncea L.). Int J Bioresour Stress Manage 6:497–502

    Article  Google Scholar 

  • Bal RS, Kumar A (2014) Studies on the epidemiology of white rust and Alternaria leaf blight and their effect on the yield of Indian mustard. Afr J Agric Res 9:302–306

    Article  Google Scholar 

  • Baldrich P, Hsing Y-IC, San Segundo B (2016) Genome-wide analysis of polycistronic microRNAs in cultivated and wild rice. Genome Biol Evol 8:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj AR, Joshi G, Pandey R, Kukreja B, Goel S, Jagannath A, Kumar A, Katiyar-Agarwal S, Agarwal M (2014) A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One 9(3):e92456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic 100:215–227

    Article  CAS  Google Scholar 

  • Bilichak A, Ilnytskyy Y, Wóycicki R, Kepeshchuk N, Fogen D, Kovalchuk I (2015) The elucidation of stress memory inheritance in Brassica rapa plants. Front Plant Sci 6:5

    PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinform 7:147–154

    Article  CAS  Google Scholar 

  • Chandrashekar N, Ali S, Rawat S, Grover A (2015) Gene expression profiling of Arabidopsis thaliana chitinase genes in response to Alternaria brassicae challenge. Indian Phytopathol 68:106–111

    Google Scholar 

  • Chen X (2017) GhSOS1, a plasma membrane Na+/H+antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12(7):e018145

    Google Scholar 

  • Chikkarra S, Chaudhury D, Dhankher OP, Jaiwal PK (2012) Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell Tissue Org Cult 108:83

    Article  CAS  Google Scholar 

  • Das B, Goswami L, Ray S, Ghosh S, Bhattacharyya S, Das S, Majumder AL (2006) Agrobacterium-mediated transformation of Brassica juncea with a cyanobacterial (Synechocystis PCC6803) delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tissue Org 86:219–231

    Article  CAS  Google Scholar 

  • Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, Hur Y, Lim YP (2011) Identification of potential microRNAs and their targets in Brassica rapa L. Mol Cell 32:21–37

    Article  CAS  Google Scholar 

  • Falco SC, Guida T, Locke M, Mauvais J, Sanders C, Ward RT, Webber P (1995) Transgenic canola and soyabean seeds with increased lysine. Biotechnol J 13:577–582

    CAS  Google Scholar 

  • Fang Y, Xie K, Hou X et al (2010) Mol Genet Genomics 283:157. https://doi.org/10.1007/s00438-009-0507-x

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinusta buliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Anjum NA, Ahmad I, Pacheco M, Duarte AC, Umar S, Khan NA, Pereira ME (2012) Metal hyperaccumulation and tolerance in Alyssum, Arabidopsis and Thlaspi. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae: contribution towards phytoremediation. Springer, Dordrecht, pp 99–137

    Chapter  Google Scholar 

  • Gill SS, Gill R, Anjum NA, Tuteja N (2013) Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress 7(Special Issue 1):73–83

    Google Scholar 

  • Griffiths-Jones S (2006) miRBase: the microRNA sequence database. MicroRNA protocols. Springer, New York, pp 129–138

    Book  Google Scholar 

  • Guo R, Deng Y, Huang Z, Chen X, XuHan X, Lai Z (2016) Identification of miRNAs affecting the establishment of Brassica alboglabra seedling. Front Plant Sci 7:1760

    PubMed  PubMed Central  Google Scholar 

  • Hadi F, Gilpin M, Fuller MP (2011) Identification and expression analysis of CBF/DREB1 and COR15 genes in mutants of Brassica oleracea var. botrytis with enhanced proline production and frost resistance. Plant Physiol Biochem 49:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Han M-H, Goud S, Song L, Fedoroff N (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci 101:1093–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X-F, Fang Y-Y, Feng L, Guo H-S (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR–NBS–LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    Article  CAS  PubMed  Google Scholar 

  • Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H, Dalta N, Reed DW, Covello PS, Mackenzie SL, Qiu X (2002) High level production of γ-linolenic acid in Brassica juncea using a Δ6 desaturase from pythiumirregulare. Plant Physiol 129:354–362

    Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122(3):747–756. https://doi.org/10.1104/pp.122.3.747

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Koh C, Feurtado JA, Tsang EW, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan SA, Shinwari ZK, Rabbani MA (2016) Agro-morphological and physiological responses of Brassica rapa ecotypes to salt stress. Pak J Bot 48(4):1379–1384

    CAS  Google Scholar 

  • Jian H, Wang J, Wang T, Wei L, Li J, Liu L (2016) Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci 7:658

    PubMed  PubMed Central  Google Scholar 

  • Jiang J, Lv M, Liang Y, Ma Z, Cao J (2014) Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics 15:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kanrar S, Venkateswari JC, Kirti PB, Chopra VL (2002) Transgenic expression of hevein, the rubber tree lectin in Indian mustard confers protection against Alternaria brassicae. Plant Sci 162(3):441–448

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim JA (2016) Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep 35(9):1943–1954

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Yu H-J, Park S-G, Shin JY, Oh M, Kim N, Mun J-H (2012) Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing. BMC Plant Biol 12:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolte SJ (2002) Diseases and their management in oilseed crops—new paradigm. In: Rai M, Singh H, Hegde DM (eds) Oilseeds and oils—research and development needs. Indian Society of oilseeds Research, Hyderabad, pp 244–253

    Google Scholar 

  • Körbes AP, Machado RD, Guzman F, Almerão MP, de Oliveira LFV, Loss-Morais G, Turchetto-Zolet AC, Cagliari A, dos Santos Maraschin F, Margis-Pinheiro M (2012) Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One 7:e50663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Shekhar S, Bisht S, Kumar V, Varma A, Kumar M (2015) Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress. J Bioeng Biomed Sci 5:147

    Article  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson T, Hundleby P, Harwood W (2019) Creating targeted gene knockouts in Brassica oleracea using CRISPR/Cas9. Methods Mol Biol 1917:155–170

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleraceavar botrytis). Plant J 26:59–67

    Google Scholar 

  • Li X, Qin JC, Wang QY, Wu X, Lang CY, Pan H, Gruber MY, Gao MJ (2011) Metabolic engineering of isoflavonegenistein in Brassica napus with soyabean isoflavone synthase. Plant Cell Rep 30:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang Y, Zhang L, Liu B, Cao L, Qi Z, Chen L (2013) Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea. J Exp Bot 64:4851–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Tang S, Mei F, Peng X, Li J, Li X, Wu G (2017) BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci 8:1–14

    Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG (2016) Crispr/cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, Li Q, Si J, Ren X, Song H (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado RUA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y (2014) MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol 164:710–720

    Article  CAS  PubMed  Google Scholar 

  • Maqbool S, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sticklen M (2002) Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor Appl Genet 105(2–3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Metwali EMR, Fuller MP, Jellings AJ (2012) Agrobacterium mediated transformation of anti-stress genes into cauliflower (Brassica oleracea var. botrytis L.). Transformation and confirmation of stress tolerance. Aust J Basic Appl Sci 6(5):31–39

    CAS  Google Scholar 

  • Mondal KK, Chatterjee SC, Viswakarma N, Bhatacharya RC, Grover A (2003) Chitinase mediated inhibitory activity of Brassicas transgenic on growth of Alternaria brassicae. Curr Microbiol 47:171–173

    Article  CAS  PubMed  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth of Alternaria brassicae. Plant cell Rep 26(2):247–252

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Musunuru K (2017) The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol 2:914–919

    Article  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci 102:3691–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Choi S, Park S, Yoon J, Park AY, Choe S (2019) DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce. Methods Mol Biol 1917:337–354

    Article  CAS  PubMed  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PS (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6:489–499

    Article  CAS  Google Scholar 

  • Qamarunnisa S, Jamil I, Raza S, Azhar A, Naqvi SHM (2015) Genetic improvement of canola against abiotic stress through incorporation of DREB gene. Asian J Agric Biol 3(3):77–104

    Google Scholar 

  • Quazi H (1988) Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor Appl Genet 75:309–318

    Article  Google Scholar 

  • Rajgopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetumglauca Na+/H+antiporter confers high level of salinity tolerance in transgenic Brassica juncia. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Rajwanshi R, Kumar D, Yusuf MA, DebRoy S, Sarin NB (2016) Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Mol Breed 36(6):1–15

    Article  CAS  Google Scholar 

  • Rani T, Yadav RC, Yadav NR, Rani A, Singh D (2013) Genetic transformation in oilseed brassicas—a review. Indian J Agric Sci 83(4):367–373

    CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz J, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214(6):965–969

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB (2014) Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol Biotechnol 56(6):535–545

    Article  CAS  PubMed  Google Scholar 

  • Ryschka U, Marthe F, Klocke E, Schumann G, Zhao H (2007) Culture and fusion of pollen protoplasts of Brassica oleracea L. var. italica with haploid mesophyll protoplasts of B. rapa L. ssp. pekinensis. Protoplasma 231(1–2):89–97

    PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena M, Roy SD, Singla-Pareek SL, Sopory SK, Bhalla-Sarin N (2011) Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28

    Article  CAS  Google Scholar 

  • Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E (2015) Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiol Mol Biol Plants 21:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D (2014) Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol 204:577–594

    Article  CAS  PubMed  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250(1):161–170

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Fristensky B, Kav NNV (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45:1320–1324

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’souza S (2012) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    Article  CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by cosuppression of endogenous delta 12-desaturases. Biochem Soc Trans 28:938–940

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Taj G, Kumar A, Garg GK, Bansal KC (2004) Introgression of osmotin gene for creation of resistance against Alternaria blight by perturbation of cell cycle machinery. Indian J Biotechnol 3:291–298

    CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2011) Co-expression and in silico interaction studies for inter-linking the activation of MAPK3 and LOX genes during pathogenesis of Alternaria brassicae in Brassica juncea. J Oilseed Brassica 2:13–20

    Google Scholar 

  • Taylor DC, Francis T, Guo Y, Brost JM, Katavic V, Mietkiewska E, Michael GE, Lozinsky S Hoffman T (2009) Molecular cloning and characterization of KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J 7:925–938

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    Article  CAS  PubMed  Google Scholar 

  • Verma SS, Yajima WR, Rahman MH, Shah S, Liu JJ, Ekramoddoullah AK, Kav NN (2012) A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol Biol 79(1–2):61–74

    Article  CAS  PubMed  Google Scholar 

  • Wahlroos T, Susi P, Solovyev A, Dorokhov Y, Morozov S, Atabekov J, Korpela T (2004) Increase of histidine content in Brassica rapa subsp. oleifera By over-expression of histidine-rich fusion proteins. Mol Breed 14:455–462

    Article  CAS  Google Scholar 

  • Wang L, Wang M-B, Tu J-X, Helliwell CA, Waterhouse PM, Dennis ES, Fu T-D, Fan Y-L (2007) Cloning and characterization of microRNAs from Brassica napus. FEBS Lett 581:3848–3856

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-B, Xu W, Xue Q-Z, Su W-A (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B11:851–861

    Article  CAS  Google Scholar 

  • Wang J, Chen L, Liu QQ, Sun SSM, Sokolov V, Wang YP (2011a) Transformation of LRP gene into Brassica napus mediated by Agrobacterium tumefaciens to enhance lysine content in seeds. Genetika 47:1616–1621

    CAS  PubMed  Google Scholar 

  • Wang J-M, Fan Z-Y, Liu Z-B, Xiang J-B, Chai L, Li X-F, Yang Y (2011b) Thylakoid-bound ascorbate peroxidase increases resistance to salt stress and drought in Brassica napus. Afr J Biotechnol 10:8039–8045

    Article  CAS  Google Scholar 

  • Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agric Food Chem 58:9572–9578

    Article  CAS  PubMed  Google Scholar 

  • Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Qiu Y, Du L, Poovaiah BW (2012) Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci 18:274–280

    Article  CAS  Google Scholar 

  • Xiao QS, Zhang XK, Xu BB, Cheng Y, Zheng PY, Lu GY (2012) Cloning and expression pattern of AnnBn1gene in Brassica napus. Chin J Oil Crops Sci 34:123–128

    CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L (2012) Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics 13:421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M (2013) Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics 14:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhu K, Li H, Han S, Meng Q, Khan SU, Fan C, Xie K, Zhou Y (2018) Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J 16(7):1322–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2011) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113

    Article  CAS  PubMed  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Govindjee MTM, Sarin NB (2010) Overexpression of c-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant Brassica plants accumulate salt in the foliage but not in the fruits. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Che L-L, Huang S-Q, Qiu C-X, Yang Z-M (2010) Cloning of pre-miR395d gene from Arabidopsis thaliana and construction of gene over-expression vector and transformation to Brassica napus. J Nanjing Agric Univ 33:35–39

    Google Scholar 

  • Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang X-J, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y-T, Wang M, Fu S-X, Yang W-C, Qi C-K, Wang X-J (2012) Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production-and development-correlated expression and new small RNA classes. Plant Physiol 158:813–823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the DST project grant (ECRA/00563/2017) for financial support during conceptualisation and writing of the chapter.

Conflict of Interest  Authors have declared no any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustagi, A. et al. (2020). Transgenic Approaches for Improvement of Brassica Species. In: Wani, S., Thakur, A., Jeshima Khan, Y. (eds) Brassica Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-34694-2_10

Download citation

Publish with us

Policies and ethics