Skip to main content

A Machine-Learning Algorithm for Estimating and Ranking the Impact of Environmental Risk Factors in Exploratory Epidemiological Studies

  • Chapter
  • First Online:
  • 799 Accesses

Abstract

Epidemiological research, such as the identification of disease risks attributable to environmental chemical exposures, is often hampered by small population effects, large measurement error, and limited a priori knowledge regarding the complex relationships between the many chemicals under study. However, even an ideal study design does not preclude the possibility of reported false positive exposure effects due to inappropriate statistical methodology. Three issues often overlooked include (1) definition of a meaningful measure of association; (2) use of model estimation strategies (such as machine-learning) that acknowledge that the true data-generating model is unknown; (3) accounting for multiple testing. In this paper, we propose an algorithm designed to address each of these limitations in turn by combining recent advances in the causal inference and multiple-testing literature along with modifications to traditional nonparametric inference methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, J., van der Laan, M. J., Smith, M. T., & Hubbard, A. E. (2007). A comparison of methods to control type I errors in microarray studies. Statistical Applications in Genetics and Molecular Biology, 6, Article 28.

    Google Scholar 

  2. Chevrier, J., Eskenazi, B., Holland, N., Bradman, A., & Barr, D. B. (2008). Effect of exposure to polychlorinated biphenyls and organochlorine pesticides on thyroid function during pregnancy. American Journal of Epidemiology, 68, 298–310.

    Article  Google Scholar 

  3. Dudoit, S., van der Laan, M. J., & Pollard, K. S. (2004). Multiple testing, part I. Single-step procedures for control of general type I error rates. Statistical Applications in Genetics and Molecular Biology, 3, Article 11.

    Google Scholar 

  4. Eskenazi, B., Marks, A. R., Brandman, A., Fenster, L., Johnson, C., Barr, D. B., et al. (2006). In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics, 118, 233–41.

    Article  Google Scholar 

  5. Fenster, L., Eskenazi, B., Anderson, M., Bradman, A., Harley, K., Hernandez, H., Hubbard, A., Barr, D.B., (2005). Association of in utero organochlorine pesticide exposure and fetal growth and length of gestation in an agricultural population. Environmental health perspectives, 114(4), pp. 597–602.

    Article  Google Scholar 

  6. Hubbard, A. E., & van der Laan, M. L. (2008). Population intervention models. Biometrika, 95, 35–47.

    Article  MathSciNet  Google Scholar 

  7. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2, e124.

    Article  Google Scholar 

  8. Little, R. J., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  9. Patel, C. J., Bhattacharya, J., & Butte, A. J. (2010). An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One, 5, e10746.

    Article  Google Scholar 

  10. Pollard, K. S., & van der Laan, M. J. (2003). Resampling-based multiple testing: asymptotic control of type I error and applications to gene expression data. In Division of biostatistics, Technical Report No. 121, University of California, Berkeley.

    Google Scholar 

  11. Robins, J. M. (1998). Marginal structural models. In 1997 Proceedings of the American Statistical Association, Section on Bayesian Statistical Science (pp. 1–10). Alexandria: American Statistical Association.

    Google Scholar 

  12. Rosenbaum, P. R. (1984). Conditional permutation tests and the propensity score in observational studies. Journal of the American Statistical Association, 79, 565–574.

    Article  MathSciNet  Google Scholar 

  13. Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1, 43–6.

    Article  Google Scholar 

  14. Rubin, D. B. (1986). Statistics and causal inference: Comment: Which ‘ifs’ have causal answers. Journal of the American Statistical Association, 81, 961–962.

    Google Scholar 

  15. Sinisi, S. E., & van der Laan, M. J. (2004). Loss-based cross-validated Deletion/Substitution/Addition algorithms in estimation. In Division of biostatistics, Technical Report No. 143, University of California, Berkeley.

    Google Scholar 

  16. Stitelman, O. M., Hubbard, A. E., & Jewell, N. P. (2010). The impact of coarsening the explanatory variable of interest in making causal inferences: Implicit assumptions behind dichotomizing variables. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 264.

    Google Scholar 

  17. Succop, P. A., Clark, S., Chen, M., & Galke, W. (2004). Imputation of data values that are less than a detection limit. Journal of Occupational and Environmental Hygiene, 1, 436–441.

    Article  Google Scholar 

  18. United States Census Bureau (2000). Poverty thresholds 2000, current population Survey. www.census.gov/hhes/poverty/poverty00/pv00thrs.html

  19. van der Laan, M. J., & Gruber, S. (2010). Collaborative double robust targeted maximum likelihood estimation. The International Journal of Biostatistics, 6, Article 17.

    Google Scholar 

  20. van der Laan, M. J., & Hubbard, A. E. (2006). Quantile-function based null distribution in resampling based multiple testing. Statistical Applications in Genetics and Molecular Biology, 5, Article 14.

    Google Scholar 

  21. van der Laan, M. J., Hubbard, A. E., & Jewell, N. (2010). Learning from data: semiparametric models versus faith-based inference. Epidemiology, 21, 479–81.

    Article  Google Scholar 

  22. van der Laan, M. J., & Petersen, M. (2007). Causal effect models for realistic individualized treatment and intention to treat rules. The International Journal of Biostatistics, 3, Article 3.

    Google Scholar 

  23. van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super Learner. U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 222.

    Google Scholar 

  24. van der Laan, M. J., & Robins, J. M. (2003). Unified methods for censored longitudinal data and causality. New York: Springer.

    Book  Google Scholar 

  25. van der Laan, M. J., & Rubin, D. B. (2006). Targeted maximum likelihood learning. The International Journal of Biostatistics, 2, Article 11.

    Google Scholar 

  26. Wang, Y., Petersen, M. L., Bangsberg, D., & van der Laan, M. J. (2006). Diagnosing bias in the inverse probability of treatment weighted estimator resulting from violation of experimental treatment assignment. In Division of biostatistics, Technical Report No. 211, University of California, Berkeley.

    Google Scholar 

  27. Young, J., Hubbard, A. E., Eskenazi, B., & Jewell, N. P. (2009). A machine-learning algorithm for estimating and ranking the impact of environmental risk factors in exploratory epidemiological studies. In Division of biostatistics, Technical Report No. 250, University of California, Berkeley.

    Google Scholar 

  28. Young, J. G., Logan, R. W., Robins, J. M., & Hernán, M. A. (2019). Inverse probability weighted estimation of risk under representative interventions in observational studies. Journal of the American Statistical Association, 114, 938–947.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Young, J.G., Hubbard, A.E., Eskenazi, B., Jewell, N.P. (2020). A Machine-Learning Algorithm for Estimating and Ranking the Impact of Environmental Risk Factors in Exploratory Epidemiological Studies. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_8

Download citation

Publish with us

Policies and ethics