Skip to main content

Sponges Resist Leakage: The Case of Authenticated Encryption

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11922))

Abstract

In this work we advance the study of leakage-resilient Authenticated Encryption with Associated Data (AEAD) and lay the theoretical groundwork for building such schemes from sponges. Building on the work of Barwell et al. (ASIACRYPT 2017), we reduce the problem of constructing leakage-resilient AEAD schemes to that of building fixed-input-length function families that retain pseudorandomness and unpredictability in the presence of leakage. Notably, neither property is implied by the other in the leakage-resilient setting. We then show that such a function family can be combined with standard primitives, namely a pseudorandom generator and a collision-resistant hash, to yield a nonce-based AEAD scheme. In addition, our construction is quite efficient in that it requires only two calls to this leakage-resilient function per encryption or decryption call. This construction can be instantiated entirely from the T-sponge to yield a concrete AEAD scheme which we call \({ \textsc {Slae}}\). We prove this sponge-based instantiation secure in the non-adaptive leakage setting. \({ \textsc {Slae}}\) bears many similarities and is indeed inspired by \({ \textsc {Isap}}\), which was proposed by Dobraunig et al. at FSE 2017. However, while retaining most of the practical advantages of \({ \textsc {Isap}}\), \({ \textsc {Slae}}\) additionally benefits from a formal security treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is not really required, since contrary to [4] the challenge oracles are not forgetful in our case. Nevertheless we conform to the original definition of forwarded queries.

References

  1. Abdalla, M., Belaïd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 471–488. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_27

    Chapter  Google Scholar 

  2. Abed, F., Berti, F., Lucks, S.: Insecurity of RCB: leakage-resilient authenticated encryption. Cryptology ePrint Archive, Report 2016/1121 (2016). http://eprint.iacr.org/2016/1121

  3. Agrawal, M., et al.: RCB: leakage-resilient authenticated encryption via re-keying. J. Supercomputing 74(9), 4173–4198 (2018)

    Article  Google Scholar 

  4. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_24

    Chapter  MATH  Google Scholar 

  5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  6. Bernstein, D.J.: CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness (2014)

    Google Scholar 

  7. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient and misuse-resistant authenticated encryption. Cryptology ePrint Archive, Report 2016/996 (2016). http://eprint.iacr.org/2016/996

  8. Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symm. Cryptol. 2017(3), 271–293 (2017)

    Google Scholar 

  9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop (2007). https://keccak.team/files/SpongeFunctions.pdf

  10. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryptol. 2017(1), 80–105 (2017)

    Google Scholar 

  11. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. Cryptology ePrint Archive, Report 2019/225 (2019). https://eprint.iacr.org/2019/225

  12. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_2

    Chapter  Google Scholar 

  13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp. 293–302. IEEE Computer Society Press, October 2008

    Google Scholar 

  14. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_13

    Chapter  Google Scholar 

  15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  16. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Leakage-resilient authenticated encryption with misuse in the leveled leakage setting: definitions, separation results, and constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://eprint.iacr.org/2018/484

  17. Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Towards lightweight side-channel security and the leakage-resilience of the duplex sponge. Cryptology ePrint Archive, Report 2019/193 (2019). https://eprint.iacr.org/2019/193

  18. Longo, J., Martin, D.P., Oswald, E., Page, D., Stam, M., Tunstall, M.J.: Simulatable leakage: analysis, pitfalls, and new constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 223–242. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_12

    Chapter  Google Scholar 

  19. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_15

    Chapter  Google Scholar 

  20. Pereira, O., Standaert, F.-X., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 96–108. ACM Press, October 2015

    Google Scholar 

  21. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS 2002, pp. 98–107. ACM Press, November 2002

    Google Scholar 

  22. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In: Sadeghi, A., Naccache, D. (eds.) Towards Hardware-Intrinsic Security - Foundations and Practice. Information Security and Cryptography, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3_5

    Chapter  Google Scholar 

  23. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_19

    Chapter  Google Scholar 

  24. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 141–151. ACM Press, October 2010

    Google Scholar 

Download references

Acknowledgements

We thank Daniel Baur and Christian Schuller for initial discussions during the early stages of this project, and our anonymous reviewers for their constructive comments. Degabriele was supported by the German Federal Ministry of Education and Research (BMBF) as well as by the Hessian State Ministry for Higher Education, Research and Arts (HMWK) within CRISP. Janson was co-funded by the DFG as part of project P2 within the CRC 1119 CROSSING. Struck was funded by the DFG as part of project P1 within the CRC 1119 CROSSING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul Degabriele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Degabriele, J.P., Janson, C., Struck, P. (2019). Sponges Resist Leakage: The Case of Authenticated Encryption. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34621-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34620-1

  • Online ISBN: 978-3-030-34621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics