Skip to main content

Neural Models for Brain Networks Connectivity Analysis

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2018)

Abstract

Functional MRI (fMRI) attracts huge interest for the machine learning community nowadays. In this work we propose a novel data augmentation procedure through analysing the inherent noise in fMRI. We then use the novel augmented dataset for the classification of subjects by age and gender, showing a significant improvement in the accuracy performance of Recurrent Neural Networks. We test the new data augmentation procedure in the fMRI dataset belonging to one international consortium of neuroimaging data for healthy controls: the Human Connectome Projects (HCP).

From the analysis of this dataset, we also show how the differences in acquisition habits and preprocessing pipelines require the development of representation learning tools. In the present paper we apply autoencoder deep learning architectures and we present their uses in resting state fMRI, using the novel data augmentation technique proposed.

This research field, appears to be unexpectedly undeveloped so far, and could potentially open new important and interesting directions for future analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikolov, T., KarafiĆ”t, M., Burget, L., Černockį»³, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google ScholarĀ 

  2. Belliveau, J.W., et al.: Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032), 716ā€“719 (1991)

    ArticleĀ  Google ScholarĀ 

  3. Burton, H., Snyder, A.Z., Conturo, T.E., Akbudak, E., Ollinger, J.M., Raichle, M.E.: Adaptive changes in early and late blind: a fMRI study of braille reading. J. Neurophysiol. 87(1), 589ā€“607 (2002)

    ArticleĀ  Google ScholarĀ 

  4. Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19(1), 72ā€“78 (2009)

    ArticleĀ  Google ScholarĀ 

  5. Wang, L., et al.: Changes in hippocampal connectivity in the early stages of Alzheimerā€™s disease: evidence from resting state fMRI. Neuroimage 31(2), 496ā€“504 (2006)

    ArticleĀ  Google ScholarĀ 

  6. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series classification using convolutional neural networks. In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data (2016)

    Google ScholarĀ 

  7. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification. arXiv preprint arXiv:1603.06995 (2016)

  8. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., Wu-Minn HCP Consortium, et al.: The Wu-Minn human connectome project: an overview. Neuroimage 80, 62ā€“79 (2013)

    Google ScholarĀ 

  9. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105ā€“124 (2013)

    ArticleĀ  Google ScholarĀ 

  10. Sannino, S., Stramaglia, S., Lacasa, L., Marinazzo, D.: Visibility graphs for fMRI data: multiplex temporal graphs and their modulations across resting-state networks. Netw. Neurosci. 1(3), 208ā€“221 (2017)

    ArticleĀ  Google ScholarĀ 

  11. Geng, X.-F., Xu, J.-H.: Application of autoencoder in depression diagnosis. DEStech Trans. Comput. Sci. Eng. (CSMA) (2017)

    Google ScholarĀ 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    ArticleĀ  Google ScholarĀ 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATHĀ  Google ScholarĀ 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735ā€“1780 (1997)

    ArticleĀ  Google ScholarĀ 

  15. Chollet, F., et al.: Keras (2015)

    Google ScholarĀ 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Irsoy, O., Cardie, C.: Opinion mining with deep recurrent neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 720ā€“728 (2014)

    Google ScholarĀ 

  19. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843ā€“852 (2015)

    Google ScholarĀ 

  20. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579ā€“2605 (2008)

    MATHĀ  Google ScholarĀ 

Download references

Acknowledgements

G.M.D. is funded by the Engineering and Physical Sciences Research Council (EPSRC) with International Doctoral Scholarship [number 1649557]. P.L. would like to acknowledge funding from the European Unionā€™s Horizon 2020 research and innovation programme PROPAGAGEING under grant agreement No. 634821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Maria Dimitri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kusztos, R., Dimitri, G.M., LiĆ³, P. (2020). Neural Models for Brain Networks Connectivity Analysis. In: Raposo, M., Ribeiro, P., SĆ©rio, S., Staiano, A., Ciaramella, A. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2018. Lecture Notes in Computer Science(), vol 11925. Springer, Cham. https://doi.org/10.1007/978-3-030-34585-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34585-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34584-6

  • Online ISBN: 978-3-030-34585-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics