Skip to main content

Efficient and Settings-Free Calibration of Detailed Kinetic Metabolic Models with Enzyme Isoforms Characterization

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2018)

Abstract

Mathematical modeling and computational analyses are essential tools to understand and gain novel insights on the functioning of complex biochemical systems. In the specific case of metabolic reaction networks, which are regulated by many other intracellular processes, various challenging problems hinder the definition of compact and fully calibrated mathematical models, as well as the execution of computationally efficient analyses of their emergent dynamics. These problems especially occur when the model explicitly takes into account the presence and the effect of different isoforms of metabolic enzymes. Since the kinetic characterization of the different isoforms is most of the times unavailable, Parameter Estimation (PE) procedures are typically required to properly calibrate the model. To address these issues, in this work we combine the descriptive power of Stochastic Symmetric Nets, a parametric and compact extension of the Petri Net formalism, with FST-PSO, an efficient and settings-free meta-heuristics for global optimization that is suitable for the PE problem. To prove the effectiveness of our modeling and calibration approach, we investigate here a large-scale kinetic model of human intracellular metabolism. To efficiently execute the large number of simulations required by PE, we exploit LASSIE, a deterministic simulator that offloads the calculations onto the cores of Graphics Processing Units, thus allowing a drastic reduction of the running time. Our results attest that estimating isoform-specific kinetic parameters allows to predict how the knock-down of specific enzyme isoforms affects the dynamic behavior of the metabolic network. Moreover, we show that, thanks to LASSIE, we achieved a speed-up of \({\sim }\!30{\times }\) with respect to the same analysis carried out on Central Processing Units.

N. Totis and A. Tangherloni—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 March 2020

    In the original version of the book, the affiliations of Antonino Staiano and Angelo Ciaramella were wrong. Both affiliations have been corrected to: Università degli Studi di Napoli Parthenope.

References

  1. Babar, J., Beccuti, M., Donatelli, S., Miner, A.S.: GreatSPN enhanced with decision diagram data structures. In: Lilius, J., Penczek, W. (eds.) Application and Theory of Petri Nets. PETRI NETS 2010, Lecture Notes in Computer Science, vol. 6128, pp. 308–317. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_19

    Chapter  Google Scholar 

  2. Barker, B.E., et al.: A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput. Biol. Chem. 59, 98–112 (2015)

    Article  Google Scholar 

  3. Beccuti, M., et al.: From symmetric nets to differential equations exploiting model symmetries. Comput. J. 58(1), 23–39 (2015)

    Article  Google Scholar 

  4. Bennett, M.R., et al.: Metabolic gene regulation in a dynamically changing environment. Nature 454(7208), 1119 (2008)

    Article  Google Scholar 

  5. Besozzi, D.: Reaction-based models of biochemical networks. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 24–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_3

    Chapter  MATH  Google Scholar 

  6. Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., Vanneschi, L.: A comparison of genetic algorithms and particle swarm optimization for parameter estimation in stochastic biochemical systems. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Lecture Notes in Computer Science, vol. 5483, pp. 116–127. Springer, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-642-01184-9_11

    Chapter  Google Scholar 

  7. Bordbar, A., Yurkovich, J.T., Paglia, G., Rolfsson, O., Sigurjónsson, Ó.E., Palsson, B.O.: Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249 (2017)

    Article  Google Scholar 

  8. Cazzaniga, P., et al.: Computational strategies for a system-level understanding of metabolism. Metabolites 4, 1034–1087 (2014)

    Article  Google Scholar 

  9. Cazzaniga, P., Nobile, M., Besozzi, D.: The impact of particles initialization in PSO: parameter estimation as a case in point. In: Proceedings of Conference on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–8. IEEE (2015)

    Google Scholar 

  10. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis of mass-action kinetics. IEEE Control Syst. Mag. 29(4), 60–78 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed coloured nets for symmetric modelling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)

    Article  Google Scholar 

  12. Cordero, F., et al.: Multi-level model for the investigation of oncoantigen-driven vaccination effect. BMC Bioinform. 14(Suppl. 6) (2013). Article number S11

    Google Scholar 

  13. Das, S., Suganthan, P.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  14. Dräger, A., Kronfeld, M., Ziller, M., Supper, J., Planatscher, H., Magnus, J.: Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst. Biol. 3, 5 (2009)

    Article  Google Scholar 

  15. Fletcher, R.: Practical Methods of Optimization. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  16. Fortin, F., De Rainville, F., Gardner, M., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  17. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  18. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: 1999 IEEE Congress on Evolutionary Computation (CEC), pp. 312–317. IEEE (1996)

    Google Scholar 

  19. Herajy, M., Fei, L., Rohr, C., Heiner, M.: Coloured hybrid Petri Nets: an adaptable modelling approach for multi-scale biological networks. Comput. Biol. Chem. 76, 87–100 (2018)

    Article  Google Scholar 

  20. Hofestädt, R.: A Petri Net application of metabolic processes. J. Syst. Anal. Model. Simul. 16, 113–122 (1994)

    MATH  Google Scholar 

  21. Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  22. Jamshidi, N., Palsson, B.Ø.: Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 98(2), 175–185 (2010)

    Article  Google Scholar 

  23. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  24. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 1(7), 49–58 (1970)

    Article  MathSciNet  Google Scholar 

  25. Liu, H., Abraham, A., Zhang, W.: A fuzzy adaptive turbulent particle swarm optimisation. Int. J. Innov. Comput. Appl. 1(1), 39–47 (2007)

    Article  Google Scholar 

  26. Metallo, C.M., Vander Heiden, M.G.: Understanding metabolic regulation and its influence on cell physiology. Mol. Cell 49(3), 388–398 (2013)

    Article  Google Scholar 

  27. Murata, T.: Petri Nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  28. Nobile, M.S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G.: Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol. Comput. 39, 70–85 (2018)

    Article  Google Scholar 

  29. Nobile, M.S., et al.: Computational intelligence for parameter estimation of biochemical systems. In: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE (2018)

    Google Scholar 

  30. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1421–1422. ACM (2012)

    Google Scholar 

  31. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform. 18(5), 870–885 (2016)

    Google Scholar 

  32. Nobile, M.S., Tangherloni, A., Besozzi, D., Cazzaniga, P.: GPU-powered and settings-free parameter estimation of biochemical systems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 32–39. IEEE (2016)

    Google Scholar 

  33. O’Brien, J., Kla, K.M., Hopkins, I.B., Malecki, E.A., McKenna, M.C.: Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem. Res. 32(4–5), 597–607 (2007)

    Article  Google Scholar 

  34. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4(1), 136–148 (1983)

    Article  MathSciNet  Google Scholar 

  35. Reddy, V., Mavrovouniotis, M., Liebman, M.: Petri Net representation in metabolic pathways. In: Proceedings of International Conference on Intelligent Systems for Molecular Biology, pp. 328–336 (1993)

    Google Scholar 

  36. Schomburg, I., et al.: BRENDA, the enzyme database: updates and major new developments. Nucl. Acids Res. 32(suppl\_1), D431–D433 (2004)

    Google Scholar 

  37. Smallbone, K., et al.: A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett. 587(17), 2832–2841 (2013)

    Article  Google Scholar 

  38. Sriyudthsak, K., Shiraishi, F., Hirai, M.Y.: Identification of a metabolic reaction network from time-series data of metabolite concentrations. PLoS ONE 8(1), e51212 (2013)

    Article  Google Scholar 

  39. Tangherloni, A., Nobile, M.S., Besozzi, D., Mauri, D., Cazzaniga, P.: LASSIE: simulating large-scale models of biochemical systems on GPUs. BMC Bioinform. 18(1), 246 (2017)

    Article  Google Scholar 

  40. Tangherloni, A., Nobile, M.S., Cazzaniga, P., Besozzi, D., Mauri, G.: Gillespie’s stochastic simulation algorithm on MIC coprocessors. J. Supercomput. 73(2), 676–686 (2017)

    Article  Google Scholar 

  41. Totis, N., Follia, L., Riganti, C., Novelli, F., Cordero, F., Beccuti, M.: Overcoming the lack of kinetic information in biochemical reactions networks. SIGMETRICS Perform. Eval. Rev. 44(4), 91–102 (2017)

    Article  Google Scholar 

  42. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al.: Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015)

    Article  Google Scholar 

  43. Wilson, J.E.: Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206(12), 2049–2057 (2003)

    Article  Google Scholar 

  44. Wittig, U., et al.: SABIO-RK-database for biochemical reaction kinetics. Nucl. Acids Res. 40(D1), D790–D796 (2011)

    Article  Google Scholar 

  45. Wuntch, T., Chen, R.F., Vesell, E.S.: Lactate dehydrogenase isozymes: kinetic properties at high enzyme concentrations. Science 167(3914), 63–65 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN, USA.

The work of MB was partially supported by Fond. CRT - “Experimentation and study of models for the evaluation of the performance and the energy efficiency of C3S."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pappalardo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 49 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Totis, N. et al. (2020). Efficient and Settings-Free Calibration of Detailed Kinetic Metabolic Models with Enzyme Isoforms Characterization. In: Raposo, M., Ribeiro, P., Sério, S., Staiano, A., Ciaramella, A. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2018. Lecture Notes in Computer Science(), vol 11925. Springer, Cham. https://doi.org/10.1007/978-3-030-34585-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34585-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34584-6

  • Online ISBN: 978-3-030-34585-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics