Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 149 Accesses

Abstract

In the first operation of the LHC, an analysis searching for new physics using the same simplified model, observed no significant excess of events over the expected SM background. In 2014, the lower limit on the gluino mass was set to be at 1.4 TeV at the 95% confidence level for this simplified signal model. The results presented in this thesis span the first two years of the second operational period of the Large Hadron Collider, during 2015 and 2016, utilizing new techniques of boosted object reconstruction to greatly extend the sensitivity to new physics and improve our understanding of the Standard Model. The lower limit of the gluino mass is now set at 1.95 TeV at the 95% confidence level using three different kinds of kinematic observables: missing energy-type, energy scale-type, and energy structure-type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Alves, Simplified models for LHC new physics searches. J. Phys. G39, 105005 (2012). Ed. by Nima Arkani-Hamed et al. https://doi.org/10.1088/0954-3899/39/10/105005. arXiv: 1105.2838 [hep-ph]

  2. J. Alwall, P. Schuster, N. Toro, Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D79, 075020 (2009). https://doi.org/10.1103/PhysRevD.79.075020. arXiv: 0810.3921 [hep-ph]

  3. ATLAS Collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \(\sqrt {s} = 8\) TeV proton-proton collisions with the ATLAS detector. J. High Energy Phys. 10, 24 (2014). https://doi.org/10.1007/JHEP10(2014)024. arXiv: 1407.0600 [hep-ex]

  4. L. Beck, Search for the production of four top quarks at the CMS experiment at \(\sqrt {s} = 13\) TeV. In: Proceedings, 9th International Workshop on Top Quark Physics (TOP 2016): Olomouc, September 19–23, 2016 (2016). arXiv: 1611.09607 [hep-ex]. https://inspirehep.net/record/1500694/files/arXiv:1611.09607.pdf

  5. J.M. Butterworth et al. Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). https://doi.org/10.1103/PhysRevLett.100.242001. arXiv: 0802.2470 [hep-ph]

  6. J.M. Butterworth, I. Ochoa, T. Scanlon, Boosted Higgs \(\to b\bar {b}\) in vector-boson associated production at 14 TeV. Eur. Phys. J. C75(8), 366 (2015). https://doi.org/10.1140/epjc/s10052-015-3592-5. arXiv: 1506.04973 [hep-ph]

  7. T. Cohen et al., Dissecting jets and missing energy searches using n-body extended simplified models. J. High Energy Phys. 8, 38 (2016). https://doi.org/10.1007/JHEP08(2016)038. arXiv: 1605.01416 [hep-ph]

  8. K. Cranmer, I. Yavin, RECAST: extending the impact of existing analyses. J. High Energy Phys. 4, 38 (2011). https://doi.org/10.1007/JHEP04(2011)038. arXiv: 1010.2506 [hep-ex]

  9. A.J. Larkoski, I. Moult, B. Nachman, Jet substructure at the large hadron collider: a review of recent advances in theory and machine learning (2017). arXiv: 1709.04464 [hep-ph]

  10. J. Shelton, Jet substructure, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012): Boulder, Colorado, June 4–29, 2012 (2013), pp. 303–340. https://doi.org/10.1142/9789814525220_0007. arXiv: 1302.0260 [hep-ph]. http://inspirehep.net/record/1217434/files/arXiv:1302.0260.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stark, G. (2020). Conclusion. In: The Search for Supersymmetry in Hadronic Final States Using Boosted Object Reconstruction. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-34548-8_10

Download citation

Publish with us

Policies and ethics