Skip to main content

Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Abstract

Nanoparticles are defined as particulate matter, usually with nanoscale dimensions (1–100 nm). Nanoparticles are broadly categorized into two groups: (i) carbon-containing nanoparticles and (ii) metallic nanoparticles. Metals such as gold (Au), iron (Fe), silver (Ag), and copper (Cu), and metal oxides such as titanium dioxide (TiO2), antimony oxide (Sb2O3), cerium dioxide (CeO2), copper oxide (CuO), nickel oxide (NiO), iron oxide (FeO), and zinc oxide (ZnO), are used for the synthesis of metallic nanoparticles. At the present time, metallic nanoparticles are being widely used at a commercial level, which has resulted in great possibilities for their interactions with green plants, human beings, microorganisms, animals, and their surrounding environment. Therefore, detailed understanding of their synthesis, interaction, and possible risk valuation would offer a foundation for harmless use of nanoparticles with insignificant effects on the environment. This chapter focuses on the hazardous aspects of nanoparticles that arise during synthesis and application. Possible strategies for risk assessment are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcariabifurcata). Appl Nanosci 4(5):571–576

    Article  CAS  Google Scholar 

  • Abdeen S, Geo S, Sukanya S, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5(2):155–162

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxysporum. Colloids Surf B Bioint 28(4):313–318

    Article  CAS  Google Scholar 

  • Akthakul A, Hochbaum AI, Stellacci F, Mayes AM (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532

    Article  CAS  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano-Metal Chem 35(1):19–26

    Article  CAS  Google Scholar 

  • Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 297–310

    Chapter  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriellasubcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634

    Article  CAS  PubMed  Google Scholar 

  • Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 41:6627–6632

    Article  CAS  PubMed  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395

    Article  CAS  PubMed  Google Scholar 

  • Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol Int J 5:591–598

    Article  CAS  Google Scholar 

  • Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892

    Article  CAS  PubMed  Google Scholar 

  • Carnes CL, Klabunde KJ (2003) The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A Chem 194(1–2):227–236

    Article  CAS  Google Scholar 

  • Chan NY, Zhao M, Wang N, Au K, Wang J, Chan LW, Dai J (2013) Palladium nanoparticle enhanced giant photoresponse at LaAlO3/SrTiO3 two-dimensional electron gas heterostructures. ACS Nano 7(10):8673–8679

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonasreinhardtii. Ecotox Environ Safe 84:155–162

    Article  CAS  Google Scholar 

  • Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM, Al-Youbi AO, Sun X (2013) Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Inter 5(15):6815–6819

    Article  CAS  Google Scholar 

  • Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behavior of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. AquatToxicol 100(2):151–159

    CAS  Google Scholar 

  • Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photon 7(9):732

    Article  CAS  Google Scholar 

  • Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl Surf Sci 256(4):998–1002

    Article  CAS  Google Scholar 

  • Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomedicine 5:653

    PubMed  PubMed Central  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343

    Article  CAS  PubMed  Google Scholar 

  • Djurišić AB, Ng AM, Chen XY (2010) ZnO nanostructures for optoelectronics: material properties and device applications. Prog Quantum Electron 34(4):191–259

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834

    Article  CAS  PubMed  Google Scholar 

  • Espitia PJ, Soares ND, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Tech 5(5):1447–1464

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchusmykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 4:1659–1664

    Article  CAS  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, ImHof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    Article  CAS  PubMed  Google Scholar 

  • Gulson B, McCall MJ, Bowman DM, Pinheiro T (2015) A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89(11):1909–1930

    Article  CAS  PubMed  Google Scholar 

  • Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193(2–3):89–96

    Article  CAS  Google Scholar 

  • Gupta N, Singh HP, Sharma RK (2010) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A Physicochem Eng Asp 367(1–3):102–107

    Article  CAS  Google Scholar 

  • Hardman R (2006) Atoxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165

    Article  PubMed  Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2–3):190–197

    Article  CAS  PubMed  Google Scholar 

  • Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42(7):2600–2605

    Article  CAS  PubMed  Google Scholar 

  • Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176

    Article  CAS  PubMed  Google Scholar 

  • Howell KA, Achterberg EP, Tappin AD, Worsfold PJ (2006) Colloidal metals in the tamar estuary and their influence on metal fractionation by membrane filtration. Environ Chem 3:199–207

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13(4):225–232

    Article  CAS  Google Scholar 

  • Hvolbæk B, Janssens TV, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2(4):14–18

    Article  Google Scholar 

  • Jose-Yacaman M, Marin-Almazo M, Ascencio JA (2001) High resolution TEM studies on palladium nanoparticles. J Mol Catal A 173:61–74

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chim 6(8–10):999–1007

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapisarvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioprocess 2(1):19

    Article  Google Scholar 

  • Khus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energy 128:331–337

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Köhler JM, Abahmane L, Wagner J, Albert J, Mayer G (2008) Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem Eng Sci 63(20):5048–5055

    Article  CAS  Google Scholar 

  • Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 175–194

    Chapter  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83(8):1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011b) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A, Pathak RN (2014) Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl 2014:1–8

    Google Scholar 

  • Kundu S, Ghosh SK, Mandal M, Pal T (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in micellar medium. Bull Mater Sci 25(6):577–579

    Article  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171

    Article  CAS  Google Scholar 

  • Lee SW, Kim SM, Choi J (2009) Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomusriparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28(1):86–91

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mat Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858

    Article  CAS  Google Scholar 

  • Li H, Wang W, Gong Z, Yu Y, Chen H, Xia J (2015) Shape-controlled synthesis of nickel phosphide nanocrystals and their application as hydrogen evolution reaction catalyst. J Phys Chem Solids 80:22–25

    Article  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Dai Z, Chen H, Ju H (2004) Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron 19(9):963–969

    Article  CAS  PubMed  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem Int J 25(4):1132–1137

    Article  CAS  Google Scholar 

  • Mak SY, Chen DH (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments 61(1):93–98

    Article  CAS  Google Scholar 

  • Mann S (ed) (1996) Biomimetic materials chemistry. VCH, New York, pp 1–40

    Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonasreinhardtii. Aquat Toxicol 142:431–440

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7(1):e30321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23(4):733–739

    Article  CAS  PubMed  Google Scholar 

  • Mornet S, Vasseur S, Grasse F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247

    Article  CAS  Google Scholar 

  • Mortimer M, Kasemets K, Heinlaan M, Kurvet I, Kahru A (2008) High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol In Vitro 22(5):1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5(1):4

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using Hippophaerhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Mol Catal A Chem 396:297–303

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonasreinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliellatertiolecta. Ecotoxicol Environ Safe 78:80–85

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat 9(3):035004

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1

    Article  CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamusligonifer. Chemosphere 89(9):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8(1):1

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S (2016) Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol 42(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355

    Article  CAS  Google Scholar 

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmussubspicatus) and a benthic bivalve (Corbiculafluminea). Gold Bull 41(2):116–126

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    CAS  Google Scholar 

  • Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mat 22(16):1805–1825

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    Article  CAS  Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health A 44(14):1485–1495

    Article  CAS  Google Scholar 

  • Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340

    Chapter  Google Scholar 

  • Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 1–31

    Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, New York

    Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassumwightii Greville. Colloids Surf B Biointer 57(1):97–101

    Article  CAS  Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122

    Google Scholar 

  • Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201

    Article  CAS  Google Scholar 

  • Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S (2019) Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech 9(3):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilusedulis. Aquat Toxicol 100(2):178–186

    Article  CAS  PubMed  Google Scholar 

  • Thanh NT, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 74(7):1624–1628

    Article  CAS  PubMed  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Scitechnol 40(19):6151–6156

    Article  CAS  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Tomczak MM, Slocik JM, Stone MO, Naik RR (2007) Bio-based approaches to inorganic material synthesis. Biochem Soc Trans 35:512–515

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) (2017) Nanomaterials in plants, algae, and microorganisms: concepts and controversies, vol vol. 1. Academic Press, London

    Google Scholar 

  • Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerene. Antimicrob Agents Chemother 43:2273–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viguie JR, Sukmanowski J, Nolting B, Royer FX (2007) Study of agglomeration of alumina nanoparticles by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Colloids Surf A Physicochem Eng Asp 302:269–275

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, Sahi S (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 473–500

    Chapter  Google Scholar 

  • Wang MF, Dykstra TE, Lou XD, Salvador MR, Scholes GD, Winnik MA (2006) Colloidal CdSenanocrystalspassivated by a dye-labeled multidentate polymer: quantitative analysis by size-exclusion chromatography. Angew Chem Int Ed 45:2221–2224

    Article  CAS  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463

    Article  CAS  PubMed  Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  PubMed  Google Scholar 

  • Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol 245:57–68

    Article  CAS  Google Scholar 

  • Zhao XU, Liz W, Chen Y, Ahi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106

    Article  CAS  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Head of the Botany Department, University of Allahabad, Allahabad, for providing the necessary facilities, and are also grateful to UGC and CSIR for providing financial support to Ifra Zoomi, Pragya Srivastava, Dheeraj Pandey, and Ovaid Akhtar.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoomi, I., Kehri, H.K., Akhtar, O., Pandey, D., Srivastava, P., Narayan, R.P. (2020). Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_3

Download citation

Publish with us

Policies and ethics