Skip to main content

Nanomaterials Used for Delivery of Bioactives

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Progression in genetic engineering has led to proliferation of a wide variety of proteins, peptides, genes, and other macromolecules. Despite their efficacy and selectivity in physiological functions, administration of most of the bioactives is a hard task to achieve. To overcome these limitations, enormous efforts are being made to formulate these bioactives into patient-friendly system using the approaches of novel drug delivery systems mainly based on liposomes, nanocapsules, nanoemulsions, niosomes, hydrogels, nanoparticles, and bioadhesive particles. Among these nano size carriers attract huge intention because at this size surface area enhances exponentially which surprisingly changes the many aspects compared to conventional particles. The key objectives in developing nanocarriers are to manage particle diameter, surface characteristics, as well as effective delivery without degradation to fulfill the specific objectives. Hence, characterizations of these nanocarriers are very critical to control their desired behavior in vitro as well as in vivo. Later on, these carriers were conjugated by specific ligand in order to deliver protein therapeutics into the target organs in active form. Infact, one of the major issues of the nanocarrier-mediated delivery is that the stability issues of bioactives inside the matrix insist selection of appropriate carriers for efficient delivery. Also, this chapter describes challenges and restrictions for the delivery of bioactives, and selection of nanocarriers such as nanoparticles and liposomes to achieve the desired response specifically at the site of action and other carriers can enhance the pharmacokinetic behavior of bioactives, therefore minimizing toxic effects and make the most of the therapeutic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad J, Singhal M, Amin S, Rizwanullah M, Akhter S, Kamal MA et al (2017) Bile salt stabilized vesicles (Bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 23(11):1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Almeida AJ, Runge S, Muller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm Sci 149(2):255–265

    Article  CAS  Google Scholar 

  • Anderson KE, Stevenson BR, Rogers JA (1999) Folic acid-PEO-labeled liposomes to improve gastrointestinal absorption of encapsulated agents. J Control Release 60:189–198

    Article  CAS  PubMed  Google Scholar 

  • Barbari GR, Dorkoosh FA, Amini M, Sharifzadeh M, Atyabi F, Balalaie S et al (2017) A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. Int J Nanomedicine 12:3471–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi R, Shao W, Wang Q, Zhang N (2008) Spray-freeze-dried dry powder inhalation of insulin loaded liposomes for enhanced pulmonary delivery. J Drug Target 16:639–648

    Article  CAS  PubMed  Google Scholar 

  • Bisker G, Yeheskely-Hayon D, Minai L, Yelin D (2012) Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells. J Control Release 162:303–309

    Article  CAS  PubMed  Google Scholar 

  • Biswal S, Murthy PN, Sahu J, Sahoo P, Amir F (2008) Vesicles of non-ionic surfactants niosomes and drug delivery potential. Int J Pharm Sci Nanotechnol 1:1–10

    CAS  Google Scholar 

  • Caliceti P, Brossa A, Salmaso S, Bersani S, Elvassore N, Bertucco A (2006) Preparation of protein loaded solid lipid nano-particles by compressed fluid process. Proc Int Symp Control Release Bioact Mater 33:383

    Google Scholar 

  • Carsten R, Ulrike S, Aurora O et al (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21:1662–1669

    Article  Google Scholar 

  • Cavalli R, Bocca C, Miglietta A, Caputo O, Gasco M (1999) Albumin adsorption on stealth and non-stealth solid lipid nanoparticles. STP Pharm Sci 9(2):183–189

    CAS  Google Scholar 

  • Chalasani KB, Russel-Jones GJ, Jain AK, Jain SK, Diwan PV (2007) Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 122:141–150

    Article  CAS  PubMed  Google Scholar 

  • Chatin B, Mevel M, Devalliere J, Dallet L, Haudebourg T, Peuziat P et al (2015) Liposome-based formulation for intracellular delivery of functional proteins. Mol Ther Nucleic Acid 4:e244

    Article  CAS  Google Scholar 

  • Cho SK, Emoto K, Su LJ, Yang X, Flaig TW, Park W (2014) Functionalized gold nanorods for thermal ablation treatment of bladder cancer. J Biomed Nanotechnol 10:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  • Damge C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117:163–170

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK (2011) Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32:4976–4986

    Article  CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Zhang Y, Chen W, Shen C, Liao M, Pan Y et al (2009) Cationic polybutyl cyanoacrylate nanoparticles for DNA delivery. J Biomed Biotechnol 2009:149254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan MR, Lee JM, Warchol MP (1995) Influence of surfactants upon protein/peptide adsorption to glass and polypropylene. Int J Pharm Sci 120(2):179–188

    Article  CAS  Google Scholar 

  • Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X et al (2014) Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm 88(2):518–528

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Hong CT, Chiu WT, Wang YY (2001) Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 219:61–72

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fuentes M, Torres D, Alonso M (2003) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Sur B Interfaces 27(2):159–168

    Article  CAS  Google Scholar 

  • Garcia-Fuentes M, Prego C, Torres D, Alonso MJ (2005a) A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 25(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fuentes M, Torres D, Alonso MJ (2005b) New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm Sci 296(1–2):122–132

    Article  CAS  Google Scholar 

  • Ghosh XP, Yang R, Arvizo ZJ, Zhu SS, Agasti Z, Rotello VJ (2010) Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. Am Chem Soc 132:2642–2645

    Article  CAS  Google Scholar 

  • Goppert TM, Muller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 3:361–372

    Article  CAS  Google Scholar 

  • Gualbert J, Shahgaldian P, Coleman AW (2003) Interactions of amphiphilic calix[4]arene-based Solid Lipid Nanoparticles with bovine serum albumin. Int J Pharm Sci 257(1–2):69–73

    Article  CAS  Google Scholar 

  • Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H et al (2010) EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging- guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou D, Xie C, Huang K, Zhu C (2003) The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 24(10):1781–1785

    Article  CAS  PubMed  Google Scholar 

  • Hu FQ, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm Sci 273(1–2):29–35

    Article  CAS  Google Scholar 

  • Ishida T, Harashim H, Kiwada H (2002) Liposome clearance. Biosci Rep 22:197–224

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Khar RK, Ahmed FJ, Diwan PV (2008) Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 69(2):226–435

    Google Scholar 

  • Jong WHD, Borm PJA (2008) Drug delivery and nanoparticle applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi MD, Muller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Kedar E, Braun E, Rutkowski Y, Emanuel N, Barenholz Y (1994) Delivery of cytokines by liposomes II. Interleukin-2 encapsulated in long-circulating sterically stabilized liposomes: Immunomodulatory and anti-tumor activity in mice. J Immunother Emphasis Tumor Immunol 16:115–124

    Article  CAS  PubMed  Google Scholar 

  • Khaksa G, D’Souza R, Lewis S, Udupa N (2000) Pharmacokinetic study of niosome encapsulated insulin. Indian J Exp Biol 38:901–905

    CAS  PubMed  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lee MY, Bhang SH (2014) Hyaluronate-gold nanoparticle/Tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8:4790–4798

    Article  CAS  PubMed  Google Scholar 

  • Lei C, Liu P, Chen B (2010) Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 132:6906–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhao B, Wang F, Wang M, Xie S, Wang S et al (2010) Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res Vet Sci 88:48–153

    Google Scholar 

  • Li Y, Chen X, Liu H, Mou X, Ren Z, Ahmad Z et al (2017) Silica nanospheres entrapped with ultra-small luminescent crystals for protein delivery. Chem Eng J 330:166–174

    Article  CAS  Google Scholar 

  • Liguori L, Marques B, Villegas-Mendez A, Rothe R, Lenormand JL (2008) Liposomes mediated delivery of pro-apoptotic therapeutic membrane proteins. J Control Release 126:217–227

    Article  CAS  PubMed  Google Scholar 

  • Liu W, He Z, Liang J, Zhu Y, Xu H, Yang X (2008) Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. J Biomed Mater Res 84(4):1018–1025

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE et al (2007) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 3:89–95

    Article  CAS  PubMed  Google Scholar 

  • Macura SL, Steinbacher JL, MacPherson MB (2013) Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts. BMC Cancer 13:400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N (2013) Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 9(18):3138–3146

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Jain NK (1994) Niosomes as drug carriers. Indian Drugs 31:81–86

    CAS  Google Scholar 

  • Malmsten M, Zauscher S (2013) Colloids and surfaces in biology. Curr Opin Colloid Sci 18:468

    Article  CAS  Google Scholar 

  • Manosroi A, Lohcharoenkal W, Gotz F, Werner RG, Manosroi W, Manosroi J (2011) Cellular uptake enhancement of Tat-GFP fusion protein loaded in elastic niosomes. J Biomed Nanotechnol 7:366–376

    Article  CAS  PubMed  Google Scholar 

  • Marcato PD, Duran N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8(5):2216–2229

    Article  CAS  PubMed  Google Scholar 

  • Martins S, Sarmento B, Ferreira DC, Souto EB (2007) Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2(4):595–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Article  CAS  PubMed  Google Scholar 

  • Morel S, Rosa Gasco M, Cavalli R (1994) Incorporation in lipospheres of [d-Trp-6]LHRH. Int J Pharm Sci 105(2):R1–R3

    Article  CAS  Google Scholar 

  • Morel S, Ugazio E, Cavalli R, Gasco MR (1996) Thymopentin in solid lipid nanoparticles, Int J Pharm 132(1–2):259–261

    Article  CAS  Google Scholar 

  • Muller R, Mehnert W, Lucks J-S, Schwarz C, Zur Mühlen A, Meyhers H et al (1995) Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 41(1):62–69

    CAS  Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Runge S, Ravelli V, Mehnert W, Thunemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm Sci 317(1):82–89

    Article  CAS  Google Scholar 

  • Niven RW, Lott FD, Ip AY, Cribbs JM (1994) Pulmonary delivery of powders and solutions containing recombinant human granulocyte colony-stimulating factor (rhG-CSF) to the rabbit. Pharm Res 11:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Olbrich C, Runge SA, Mehnert W, Thunemann AF, Muller RH (2000) Entrapment efficiency and biodegradation of cyclosporine loaded solid lipid nanoparticles (SLN) for peroral administration. In: Proc. 3rd world meeting APV/APGI, Berlin, pp 425–426

    Google Scholar 

  • Patel RP, Patel H, Baria AH (2009) Formulation and evaluation of liposomes of ketokonazole. Int J Drug Deliv Technol 1(1):16–23

    Google Scholar 

  • Patel S, Bhirde AA, Rusling JF, Chen X, Gutkind JS, Patel V (2011) Nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics 3(1):34–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasetyanto EA, Bertucci A, Septiadi D, Corradini R, Castro-Hartmann P, De Cola L (2016) Breakable hybrid organosilica nanocapsules for protein delivery. Angew Chem Int Ed Engl 55(10):3323–3327

    Article  CAS  PubMed  Google Scholar 

  • Radin S, Falaize S, Lee MH, Ducheyne P (2002) In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials 23:3113–3122

    Article  CAS  PubMed  Google Scholar 

  • Radtke M, Muller RH (2001a) Novel concept of topical cyclosporine delivery with supersaturated SLN creams. Proc Int Symp Control Release Bioact Mater 28:470–471

    Google Scholar 

  • Radtke M, Muller RH (2001b) Stability study of creams containing cyclosporine SLN. Proc Int Symp Control Release Bioact Mater 28:472–473

    Google Scholar 

  • Ramachandran R, Paul W, Sharma CP (2008) Synthesis and characterization of. J Biomed Mater Res B 18:699–703

    Google Scholar 

  • Rentel CO, Bouwstra JA, Naisbett B, Junginger HE (1999) Niosomes as a novel peroral vaccine delivery system. Int J Pharm 186:161–167

    Article  CAS  PubMed  Google Scholar 

  • Rezler EM, Khan DR, Lauer-Fields J, Cudic M, Baronas-Lowell D, Fields GB (2007) Targeted drug delivery utilizing protein-like molecular architecture. J Am Chem Soc 129:4961–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytting E, Nguyen J, Wang X, Kissel T (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5:629–639

    Article  CAS  PubMed  Google Scholar 

  • Shao X, Zhang J, Rajian R (2011) 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 5:8967–8973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Li K, Cheng L, Liu Z, Lee ST, Liu J (2014) Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-by-layer assembled multifunctional nanoparticles. ACS Appl Mater Interfaces 6:6443–6452

    Article  CAS  PubMed  Google Scholar 

  • Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793

    Article  CAS  PubMed  Google Scholar 

  • Solaro R (2008) Targeted delivery of proteins by nanosized carriers. J Polym Sci 46:1–11

    Article  CAS  Google Scholar 

  • Solaro R, Chiellini F (2006) Nanoparticles for the targeted delivery of peptides and proteins. In: Ravi Kumar MNV (ed) Handbook of particulate drug delivery, vol 2. American Scientific Publisher, New York, pp 193–222

    Google Scholar 

  • Song YK, Liu D, Maruyama K, Takizawa T (1996) Antibody mediated lung targeting of long circulating emulsions. J Pharm Sci Tech 50:372–377

    CAS  Google Scholar 

  • Song M, Zhang Y, Chen K, Wang H, Gong R (2017) Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React Funct Polym 117:10–15

    Article  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sundarraj S, Thangam R, Sujitha MV, Vimala K, Kannan S (2014) Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl Pharmacol 275:232–243

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L et al (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621–638

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Kobayashi H, Niidome Y, Mori T, Katayama Y, Niidome T (2013) CW/pulsed NIR irradiation of gold nanorods: effect on transdermal protein delivery mediated by photothermal ablation. J Control Release 171(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    Article  CAS  PubMed  Google Scholar 

  • Ugazio E, Cavalli R, Gasco MR (2002) Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm Sci 241:341–344

    Article  CAS  Google Scholar 

  • Vallet-Regi M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem 46:7548–7558

    Article  CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  PubMed  Google Scholar 

  • Videira M, Azevedo AF, Almeida AJ (1998) Entrapment of a high molecular weight protein into solid lipid nanoparticles. APV/APGI:629–630

    Google Scholar 

  • Videira M, Florin do H, Almeida AJ (2002) Preparation of solid lipid nanoparticles (SLN): a potential protein delivery system. V Spanish–Portuguese Con Control Drug Del:69–70

    Google Scholar 

  • Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. Bouchemal J Control Release 78:15–24

    Article  CAS  Google Scholar 

  • Vila A, Sanchez A, Evora CI, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particlesas nasal protein carriers: the influence of the particle size. Int J Pharm 292:43–52

    Article  CAS  PubMed  Google Scholar 

  • Vyas SP, Khar RK (2002) Targeted and controlled drug delivery, 1st edn. CBS Publishers and Distributors, New Delhi, pp 332–334

    Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Xing X, He X, Peng J, Wang K, Tan W (2005) Uptake of silica coated nanoparticles by HeLa cells. J Nanosci Nanotechnol 5:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F (2014) Cellular uptake of beta-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization-evaporation method. J Agri Food Chem 62(5):1096–1104

    Article  CAS  Google Scholar 

  • Yousefi A, Esmaeili F, Rahimian S, Atyabi F, Dinarvand R (2009) Preparation and in vitro evaluation of a pegylated nano-liposomal formulation containing docetaxel. Sci Pharm 77:453–464

    Article  CAS  Google Scholar 

  • Yu M, Wu J, Shi J, Farokhzad OC (2016) Nanotechnology for protein delivery: Overview and perspectives. J Control Release 240:24–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yie G, Li Y, Yang Q, Na gai T (2000) Studies on the cyclosporin A loaded stearic acid nanoparticles. Int J Pharm Sci 200:153–159

    Article  CAS  Google Scholar 

  • Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327(1–2):153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, A.K., Gupta, U. (2020). Nanomaterials Used for Delivery of Bioactives. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_19

Download citation

Publish with us

Policies and ethics