Skip to main content

Wastewater and Industrial Effluent Treatment by Using Nanotechnology

  • Chapter
  • First Online:
Book cover Nanomaterials and Environmental Biotechnology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Over a decade, water pollution has been our major area of concern that has affected agriculture and health of the people and animals widely across the globe. Apart from the unstoppable and polluting effluents from the industries, several gallons of water are also wasted domestically every day in the form of plumbing fixtures, toilets, laundry, bath and miscellaneous activities. This problem has plagued the entire world’s environment socially and economically. However, the waste can be treated to overcome this emerging pain implementing various methods in which nanotechnology has played a promising role. The science which involves nanoparticles known for their large surface area, high reactivity, a high degree of functionalization, etc. can be efficiently used to remove the metal toxins and microbial, organic and inorganic contaminants from the polluted water. Different nano-processes can be employed to overcome this growing issue such as nano-adsorbent, nanocatalyst and nanomembranes and by the integration of biological processes. These nano-processes include the use of activated carbon, carbon nanotubes, zinc oxide, titanium oxide, electrocatalyst, photocatalyst and other physical and chemical materials and phenomenon for the elimination of contaminants from the water bodies. This book chapter describes various efficient techniques and materials for both small- and large-scale treatment of wastewater and industrial effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhattacharya S, Saha I, Mukhopadhya A, Chattopadhyay D, Ghosh UC, Chatterjee D (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3(3):59–64. ISSN 2249-8532

    Google Scholar 

  • Britz TJ, van Schalkwyk C, Hung YT (2006) Treatment of dairy processing wastewaters. pp. 1–28

    Google Scholar 

  • Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tertoctylphenol. Anal Chem 75(10):2517–2521

    Article  CAS  Google Scholar 

  • Cammarota MC, Teixeira GA, Freire DMG (2001) Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents. Biotechnol Lett 23(19):1591–1595

    Article  CAS  Google Scholar 

  • Chen W, Duan L, Zhu DQ (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300

    Article  CAS  Google Scholar 

  • Chorawala KK, Mehta MJ (2015) Applications of nanotechnology in wastewater treatment. Int J Innov Emerg Res Eng 2(1):21–26. P-ISSN: 2394-5394

    Google Scholar 

  • Cloete TE, de Kwaadsteniet M, Botes M, Lopez-Romero JM (2010) Nanotechnology in water treatment applications. Caister Academic Press, 2010

    Google Scholar 

  • Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39(5):1366–1377

    Article  CAS  Google Scholar 

  • Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169(1e3):466–471

    Article  CAS  Google Scholar 

  • Ebrahiem EE, Al-Maghrabi MN, Mobarki AR (2017) Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab J Chem 10:S1674–S1679

    Article  CAS  Google Scholar 

  • Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152

    Article  CAS  Google Scholar 

  • Kaufman Y, Berman A, Freger V (2010) Supported lipid bilayer membranes for water purification by reverse osmosis. Langmuir 26(10):7388–7395

    Article  CAS  Google Scholar 

  • Lens PNL, Virkutye J, Jegatheesan V, Kim SH, Al-Abed S (2013) Nanotechnology for water and wastewater treatment. IWA Publishing, 2013

    Google Scholar 

  • Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan ZK, Di ZC, Zhu YF, Xu CL, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2þ, Cu2þ and Cd2þ ions from aqueous solutions by multi-walled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li QL, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  CAS  Google Scholar 

  • Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg(2þ) and CH(3)Hg(þ) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82(22):9194–9200

    Article  CAS  Google Scholar 

  • Lisha KP, Pradeep T (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44(7):697–705

    Article  CAS  Google Scholar 

  • Lu CS, Chiu H, Liu CT (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45(8):2850–2855

    Article  CAS  Google Scholar 

  • Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113(8):3062–3069

    Article  CAS  Google Scholar 

  • Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. J Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  • Prachi, Gautam P, Madathil D, Nair ANB (2013) Nanotechnology in waste water treatment: a review. Int J ChemTech Res. CODEN(USA): IJCRGG ISSN: 0974-4290 5(5):2303–2308

    CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Sethi S (2018) Wastewater management: new technologies for treatment. Construction Times, Feb 2018

    Google Scholar 

  • Shah MP (2016) Industrial wastewater treatment: a challenging task in the industrial. Adv Recycling Waste Manag 2:115

    Google Scholar 

  • Shah S (2018) Wastewater management: new technologies for treatment. IN FOCUS

    Google Scholar 

  • Sharma V, Sharma A (2012) Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. Int J Enhan Res Sci Technol Eng 1(2):1–8, ISSN No: 2319-7463

    Google Scholar 

  • Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30(6):583–609

    Article  CAS  Google Scholar 

  • Tambe Patil BB (2015) Wastewater treatment using nanoparticles. J Adv Chem Eng 5:131. https://doi.org/10.4172/2090-4568.1000131

    Article  CAS  Google Scholar 

  • Theron J, Cloete TE, de Kwaadsteniet M (2010) Current molecular and emerging nano biotechnology approaches for the detection of microbial pathogens. Crit Rev Microbiol 36(4):318–339

    Article  CAS  Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479

    Article  CAS  Google Scholar 

  • Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring e a review. Environ Sci Technol 44(10):3656–3669

    Article  CAS  Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez JJP (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

  • Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2(3):44–50

    Article  Google Scholar 

  • Yang LX, Chen BB, Luo SL, Li JX, Liu RH, Cai QY (2010) Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO(2) nanotube array through fluorescence resonance energy transfer. Environ Sci Technol 44(20):7884–7889

    Article  CAS  Google Scholar 

  • Zekić E, Vuković Ž, Halkijević I (2018) Application of nanotechnology in wastewater treatment. Građevinar 70(04):315–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angana Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maity, S., Sinha, D., Sarkar, A. (2020). Wastewater and Industrial Effluent Treatment by Using Nanotechnology. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_16

Download citation

Publish with us

Policies and ethics