Skip to main content

Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. https://doi.org/10.1038/nature07385. Epub 2008 Sep 4.

  2. Abramsson, A., Kurup, S., Busse, M., Yamada, S., Lindblom, P., Schallmeiner, E., Stenzel, D., Sauvaget, D., Ledin, J., Ringvall, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes & Development, 21, 316–331.

    Article  CAS  Google Scholar 

  3. Abu Arab, W., Kotb, R., Sirois, M., & Rousseau, É. (2011). Concentration- and time-dependent effects of enoxaparin on human adenocarcinomic epithelial cell line A549 proliferation in vitro. Canadian Journal of Physiology and Pharmacology, 89, 705–711.

    Article  CAS  PubMed  Google Scholar 

  4. Ai, X., Kitazawa, T., Do, A. T., Kusche-Gullberg, M., Labosky, P. A., & Emerson, C. P., Jr. (2007). SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development, 134, 3327–3338.

    Article  CAS  PubMed  Google Scholar 

  5. Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., Prieto-Sanchez, R. M., Barba, I., Martinez-Saez, E., Prudkin, L., et al. (2010). TGF-beta receptor inhibitors target the CD44(high)/Id1(high) Glioma-initiating cell population in human Glioblastoma. Cancer Cell, 18, 655–668.

    Article  CAS  PubMed  Google Scholar 

  6. Aronica, E., Gorter, J. A., Redeker, S., Van Vliet, E. A., Ramkema, M., Scheffer, G. L., Scheper, R. J., Van Der Valk, P., Leenstra, S., Baayen, J. C., et al. (2005). Localization of breast Cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia, 46, 849–857.

    Article  CAS  PubMed  Google Scholar 

  7. Arslan, F., Bosserhoff, A. K., Nickl-Jockschat, T., Doerfelt, A., Bogdahn, U., & Hau, P. (2007). The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-beta2. British Journal of Cancer, 96, 1560–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balzarotti, M., Fontana, F., Marras, C., Boiardi, A., Croci, D., Ciusani, E., & Salmaggi, A. (2006). In vitro study of low molecular weight heparin effect on cell growth and cell invasion in primary cell cultures of high-grade gliomas. Oncology Research, 16, 245–250.

    Article  CAS  PubMed  Google Scholar 

  9. Bandtlow, C. E., & Zimmermann, D. R. (2000). Proteoglycans in the developing brain: New conceptual insights for old proteins. Physiological Reviews, 80, 1267–1290.

    Article  CAS  PubMed  Google Scholar 

  10. Barash, U., Spyrou, A., Liu, P., Vlodavsky, E., Zhu, C., Luo, J., Su, D., Ilan, N., Forsberg-Nilsson, K., Vlodavsky, I., et al. (2019). Heparanase promotes glioma progression via enhancing CD24 expression. International journal of cancer, 145(6), 1596–1608.

    Article  CAS  PubMed  Google Scholar 

  11. Barros, C. S., Franco, S. J., & Muller, U. (2011). Extracellular matrix: Functions in the nervous system. Cold Spring Harbor Perspectives in Biology, 3, a005108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Basche, M., Gustafson, D. L., Holden, S. N., O’Bryant, C. L., Gore, L., Witta, S., Schultz, M. K., Morrow, M., Levin, A., Creese, B. R., et al. (2006). A phase I biological and pharmacologic study of the Heparanase inhibitor PI-88 in patients with advanced solid Tumors. Clinical Cancer Research, 12, 5471–5480.

    Article  CAS  PubMed  Google Scholar 

  13. Bergstrom, T., Holmqvist, K., Tararuk, T., Johansson, S., & Forsberg-Nilsson, K. (2014). Developmentally regulated collagen/integrin interactions confer adhesive properties to early postnatal neural stem cells. Biochimica et Biophysica Acta, 1840, 2526–2532.

    Article  PubMed  CAS  Google Scholar 

  14. Bertolotto, A., Magrassi, M. L., Orsi, L., Sitia, C., & Schiffer, D. (1986). Glycosaminoglycan changes in human gliomas. A biochemical study. Journal of Neuro-Oncology, 4, 43–48.

    Article  CAS  PubMed  Google Scholar 

  15. Bignami, A., Hosley, M., & Dahl, D. (1993). Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anatomy and Embryology, 188, 419–433.

    Article  CAS  PubMed  Google Scholar 

  16. Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., et al. (2013). The somatic genomic landscape of glioblastoma. Cell, 155, 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brennan, T. V., Lin, L., Brandstadter, J. D., Rendell, V. R., Dredge, K., Huang, X., & Yang, Y. (2016). Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. Journal of Clinical Investigation, 126, 207–219.

    Article  PubMed  Google Scholar 

  18. Brickman, Y. G., Ford, M. D., Gallagher, J. T., Nurcombe, V., Bartlett, P. F., & Turnbull, J. E. (1998). Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. The Journal of Biological Chemistry, 273, 4350–4359.

    Article  CAS  PubMed  Google Scholar 

  19. Buckner, J. C., Brown, P. D., O’Neill, B. P., Meyer, F. B., Wetmore, C. J., & Uhm, J. H. (2007). Central nervous system tumors. Mayo Clinic Proceedings, 82, 1271–1286.

    Article  PubMed  Google Scholar 

  20. Bullock, S. L., Fletcher, J. M., Beddington, R. S., & Wilson, V. A. (1998). Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes & Development, 12, 1894–1906.

    Article  CAS  Google Scholar 

  21. Carpentier, A., Canney, M., Vignot, A., Reina, V., Beccaria, K., Horodyckid, C., Karachi, C., Leclercq, D., Lafon, C., Chapelon, J. Y., et al. (2016). Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Science Translational Medicine, 8, 343re342.

    Article  CAS  Google Scholar 

  22. Castro, M. G., Cowen, R., Williamson, I. K., David, A., Jimenez-Dalmaroni, M. J., Yuan, X., Bigliari, A., Williams, J. C., Hu, J., & Lowenstein, P. R. (2003). Current and future strategies for the treatment of malignant brain tumors. Pharmacology & Therapeutics, 98, 71–108.

    Article  CAS  Google Scholar 

  23. Cavalli, F.M.G., Remke, M., Rampasek, L., Peacock, J., Shih, D.J.H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissy, A.S., et al. (2017). Intertumoral heterogeneity within Medulloblastoma subgroups. Cancer Cell 31, 737–754 e736.

    Google Scholar 

  24. Changyou, Z., & Weiyue, L. (2012). The blood-brain/tumor barriers: Challenges and chances for malignant Gliomas targeted drug delivery. Current Pharmaceutical Biotechnology, 13, 2380–2387.

    Article  Google Scholar 

  25. Chen, Z., & Hambardzumyan, D. (2018). Immune Microenvironment in Glioblastoma Subtypes. Frontiers in Immunology, 9, 1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chow, L. Q. M., Gustafson, D. L., O’Bryant, C. L., Gore, L., Basche, M., Holden, S. N., Morrow, M. C., Grolnic, S., Creese, B. R., Roberts, K. L., et al. (2008). A phase I pharmacological and biological study of PI-88 and docetaxel in patients with advanced malignancies. Cancer Chemotherapy and Pharmacology, 63, 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clegg, J. M., Conway, C. D., Howe, K. M., Price, D. J., Mason, J. O., Turnbull, J. E., Basson, M. A., & Pratt, T. (2014). Heparan sulfotransferases Hs6st1 and Hs2st keep Erk in check for mouse corpus callosum development. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34, 2389–2401.

    Article  CAS  Google Scholar 

  28. Clevers, H. (2011). The cancer stem cell: Premises, promises and challenges. Nature Medicine, 17, 313–319.

    Article  CAS  PubMed  Google Scholar 

  29. Condac, E., Silasi-Mansat, R., Kosanke, S., Schoeb, T., Towner, R., Lupu, F., Cummings, R. D., & Hinsdale, M. E. (2007). Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 9416–9421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Conti, L., Pollard, S. M., Gorba, T., Reitano, E., Toselli, M., Biella, G., Sun, Y., Sanzone, S., Ying, Q. L., Cattaneo, E., et al. (2005). Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biology, 3, e283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Deligny, A., Dierker, T., Dagalv, A., Lundequist, A., Eriksson, I., Nairn, A. V., Moremen, K. W., Merry, C. L. R., & Kjellen, L. (2016). NDST2 (N-Deacetylase/N-Sulfotransferase-2) enzyme regulates Heparan Sulfate chain length. The Journal of Biological Chemistry, 291, 18600–18607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dietl, S., Schwinn, S., Dietl, S., Riedel, S., Deinlein, F., Rutkowski, S., von Bueren, A. O., Krauss, J., Schweitzer, T., Vince, G. H., et al. (2016). MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and group 3-properties. BMC Cancer, 16, 115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dimberg, A. (2014). The glioblastoma vasculature as a target for cancer therapy. Biochemical Society Transactions, 42, 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  34. Dirkse, A., Golebiewska, A., Buder, T., Nazarov, P. V., Muller, A., Poovathingal, S., Brons, N. H. C., Leite, S., Sauvageot, N., Sarkisjan, D., et al. (2019). Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nature Communications, 10, 1787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dredge, K., Hammond, E., Davis, K., Li, C. P., Liu, L., Johnstone, K., Handley, P., Wimmer, N., Gonda, T. J., Gautam, A., et al. (2010). The PG500 series: Novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Investigational New Drugs, 28, 276–283.

    Article  CAS  PubMed  Google Scholar 

  36. Dredge, K., Hammond, E., Handley, P., Gonda, T. J., Smith, M. T., Vincent, C., Brandt, R., Ferro, V., & Bytheway, I. (2011). PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. British Journal of Cancer, 104, 635–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dwyer, C. A., Bi, W. L., Viapiano, M. S., & Matthews, R. T. (2014). Brevican knockdown reduces late-stage glioma tumor aggressiveness. Journal of Neuro-Oncology, 120, 63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eberhart, C. G., & Burger, P. C. (2003). Anaplasia and grading in medulloblastomas. Brain pathology (Zurich, Switzerland), 13, 376–385.

    Article  Google Scholar 

  39. El-Habashy, S. E., Nazief, A. M., Adkins, C. E., Wen, M. M., El-Kamel, A. H., Hamdan, A. M., Hanafy, A. S., Terrell, T. O., Mohammad, A. S., Lockman, P. R., et al. (2014). Novel treatment strategies for brain tumors and metastases. Pharmaceutical Patent Analyst, 3, 279–296.

    Article  CAS  PubMed  Google Scholar 

  40. Ellison, D. W., Onilude, O. E., Lindsey, J. C., Lusher, M. E., Weston, C. L., Taylor, R. E., Pearson, A. D., & Clifford, S. C. (2005). Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: The United Kingdom Children’s Cancer study group brain tumour committee. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23, 7951–7957.

    Article  CAS  Google Scholar 

  41. Esmaeili, M., Stensjoen, A. L., Berntsen, E. M., Solheim, O., & Reinertsen, I. (2018). The direction of tumour growth in Glioblastoma patients. Scientific Reports, 8, 1199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fager, G., Camejo, G., Olsson, U., Ostergren-Lunden, G., & Bondjers, G. (1992). Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. II. The platelet-derived growth factor A-chain contains a sequence that specifically binds heparin. In Vitro Cellular & Developmental Biology: Journal of the Tissue Culture Association, 28A, 176–180.

    Article  CAS  Google Scholar 

  43. Faissner, A., & Reinhard, J. (2015). The extracellular matrix compartment of neural stem and glial progenitor cells. Glia, 63, 1330–1349.

    Article  PubMed  Google Scholar 

  44. Ferro, V., Fewings, K., Palermo, M. C., & Li, C. (2001). Large-scale preparation of the oligosaccharide phosphate fraction of Pichia holstii NRRL Y-2448 phosphomannan for use in the manufacture of PI-88. Carbohydrate Research, 332, 183–189.

    Article  CAS  PubMed  Google Scholar 

  45. Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., Kusche-Gullberg, M., Eriksson, I., Ledin, J., Hellman, L., & Kjellen, L. (1999). Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 400, 773–776.

    Article  CAS  PubMed  Google Scholar 

  46. Forsberg, M., Holmborn, K., Kundu, S., Dagalv, A., Kjellen, L., & Forsberg-Nilsson, K. (2012). Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. The Journal of Biological Chemistry, 287, 10853–10862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forsten-Williams, K., Chua, C. C., & Nugent, M. A. (2005). The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. Journal of Theoretical Biology, 233, 483–499.

    Article  CAS  PubMed  Google Scholar 

  48. Franchini, M., & Mannucci, P. M. (2015). Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Annals of Medicine, 47, 116–121.

    Article  CAS  PubMed  Google Scholar 

  49. Friedmann-Morvinski, D. (2014). Glioblastoma heterogeneity and cancer cell plasticity. Critical Reviews in Oncogenesis, 19, 327–336.

    Article  PubMed  Google Scholar 

  50. Fujikawa, A., Nagahira, A., Sugawara, H., Ishii, K., Imajo, S., Matsumoto, M., Kuboyama, K., Suzuki, R., Tanga, N., Noda, M., et al. (2016). Small-molecule inhibition of PTPRZ reduces tumor growth in a rat model of glioblastoma. Scientific Reports, 6, 20473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galli, M., Magen, H., Einsele, H., Chatterjee, M., Grasso, M., Specchia, G., Barbieri, P., Paoletti, D., Pace, S., & Sanderson, R. D. (2015). Roneparstat (SST0001), an innovative heparanase (HPSE) inhibitor for multiple myeloma (MM) therapy: First in man study. Blood, 126, 3246–3246.

    Article  Google Scholar 

  52. Garcion, E., Halilagic, A., Faissner, A., & ffrench-Constant, C. (2004). Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development, 131, 3423–3432.

    Article  CAS  PubMed  Google Scholar 

  53. Garwood, J., Garcion, E., Dobbertin, A., Heck, N., Calco, V., ffrench-Constant, C., & Faissner, A. (2004). The extracellular matrix glycoprotein Tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. The European Journal of Neuroscience, 20, 2524–2540.

    Article  PubMed  Google Scholar 

  54. Gengrinovitch, S., Berman, B., David, G., Witte, L., Neufeld, G., & Ron, D. (1999). Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. The Journal of Biological Chemistry, 274, 10816–10822.

    Article  CAS  PubMed  Google Scholar 

  55. Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., Kranenburg, T. A., Hogg, T., Poppleton, H., Martin, J., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468, 1095–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giros, A., Morante, J., Gil-Sanz, C., Fairen, A., & Costell, M. (2007). Perlecan controls neurogenesis in the developing telencephalon. BMC Developmental Biology, 7, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gritsenko, P. G., Ilina, O., & Friedl, P. (2012). Interstitial guidance of cancer invasion. The Journal of Pathology, 226, 185–199.

    Article  CAS  PubMed  Google Scholar 

  58. Groothuis, D. R. (2000). The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-Oncology, 2, 45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, J. Y., Hsu, H. S., Tyan, S. W., Li, F. Y., Shew, J. Y., Lee, W. H., & Chen, J. Y. (2017). Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner. Oncogene, 36, 2457–2471.

    Article  CAS  PubMed  Google Scholar 

  60. Gupta, P., Oegema, T. R., Jr., Brazil, J. J., Dudek, A. Z., Slungaard, A., & Verfaillie, C. M. (1998). Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood, 92, 4641–4651.

    Article  CAS  PubMed  Google Scholar 

  61. Gutter-Kapon, L., Alishekevitz, D., Shaked, Y., Li, J. P., Aronheim, A., Ilan, N., & Vlodavsky, I. (2016). Heparanase is required for activation and function of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 113, E7808–E7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Habuchi, H., Nagai, N., Sugaya, N., Atsumi, F., Stevens, R. L., & Kimata, K. (2007). Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. The Journal of Biological Chemistry, 282, 15578–15588.

    Article  CAS  PubMed  Google Scholar 

  63. Hammond, E., Brandt, R., & Dredge, K. (2012). PG545, a Heparan Sulfate mimetic, reduces Heparanase expression In Vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model. PLoS One, 7, e52175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hammond, E., Handley, P., Dredge, K., & Bytheway, I. (2013). Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio, 3, 346–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hammond, E., Haynes, N. M., Cullinane, C., Brennan, T. V., Bampton, D., Handley, P., Karoli, T., Lanksheer, F., Lin, L., Yang, Y., et al. (2018). Immunomodulatory activities of pixatimod: Emerging nonclinical and clinical data, and its potential utility in combination with PD-1 inhibitors. Journal for Immunotherapy of Cancer, 6, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322.

    Article  CAS  PubMed  Google Scholar 

  67. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  68. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., & Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Higuchi, M., Ohnishi, T., Arita, N., Hiraga, S., & Hayakawa, T. (1993). Expression of tenascin in human gliomas: Its relation to histological malignancy, tumor dedifferentiation and angiogenesis. Acta Neuropathologica, 85(5), 481–487.

    Article  CAS  PubMed  Google Scholar 

  70. Holley, R. J., Pickford, C. E., Rushton, G., Lacaud, G., Gallagher, J. T., Kouskoff, V., & Merry, C. L. (2011). Influencing hematopoietic differentiation of mouse embryonic stem cells using soluble heparin and heparan sulfate saccharides. The Journal of Biological Chemistry, 286, 6241–6252.

    Article  CAS  PubMed  Google Scholar 

  71. Holmborn, K., Ledin, J., Smeds, E., Eriksson, I., Kusche-Gullberg, M., & Kjellen, L. (2004). Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. The Journal of Biological Chemistry, 279, 42355–42358.

    Article  CAS  PubMed  Google Scholar 

  72. Holthouse, D. J., Dallas, P. B., Ford, J., Fabian, V., Murch, A. R., Watson, M., Wong, G., Bertram, C., Egli, S., Baker, D. L., et al. (2009). Classic and desmoplastic medulloblastoma: Complete case reports and characterizations of two new cell lines. Neuropathology: Official journal of the Japanese society of. Neuropathology, 29, 398–409.

    Article  PubMed  Google Scholar 

  73. Hong, X., Jiang, F., Kalkanis, S. N., Zhang, Z. G., Zhang, X., Zheng, X., Jiang, H., Mikkelsen, T., & Chopp, M. (2008). Increased chemotactic migration and growth in heparanase-overexpressing human U251n glioma cells. Journal of Experimental & Clinical Cancer Research: CR, 27, 23.

    Article  CAS  PubMed Central  Google Scholar 

  74. Hong, X., Nelson, K. K., deCarvalho, A. C., & Kalkanis, S. N. (2010). Heparanase expression of glioma in human and animal models. Journal of Neurosurgery, 113, 261–269.

    Article  CAS  PubMed  Google Scholar 

  75. Hu, F., Dzaye, O., Hahn, A., Yu, Y., Scavetta, R. J., Dittmar, G., Kaczmarek, A. K., Dunning, K. R., Ricciardelli, C., Rinnenthal, J. L., et al. (2015). Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages toll-like receptor 2 signaling. Neuro-Oncology, 17, 200–210.

    Article  CAS  PubMed  Google Scholar 

  76. Ibrahim, S. A., Gadalla, R., El-Ghonaimy, E. A., Samir, O., Mohamed, H. T., Hassan, H., Greve, B., El-Shinawi, M., Mohamed, M. M., & Gotte, M. (2017). Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, notch and EGFR signaling pathways. Molecular Cancer, 16, 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Inatani, M., Irie, F., Plump, A. S., Tessier-Lavigne, M., & Yamaguchi, Y. (2003). Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science (New York, N.Y.), 302, 1044–1046.

    Article  CAS  Google Scholar 

  78. Inda, M.-d.-M., Bonavia, R., & Seoane, J. (2014). Glioblastoma Multiforme: A look inside its heterogeneous nature. Cancers, 6, 226–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Itoh, Y., Toriumi, H., Yamada, S., Hoshino, H., & Suzuki, N. (2011). Astrocytes and pericytes cooperatively maintain a capillary-like structure composed of endothelial cells on gel matrix. Brain Research, 1406, 74–83.

    Article  CAS  PubMed  Google Scholar 

  80. Ivanov, D. P., Coyle, B., Walker, D. A., & Grabowska, A. M. (2016). In vitro models of medulloblastoma: Choosing the right tool for the job. Journal of Biotechnology, 236, 10–25.

    Article  CAS  PubMed  Google Scholar 

  81. Iversen, P. O., Sorensen, D. R., & Benestad, H. B. (2002). Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia, 16, 376–381.

    Article  CAS  PubMed  Google Scholar 

  82. Izumikawa, T., Kanagawa, N., Watamoto, Y., Okada, M., Saeki, M., Sakano, M., Sugahara, K., Sugihara, K., Asano, M., & Kitagawa, H. (2010). Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. The Journal of Biological Chemistry, 285, 12190–12196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jakobsson, L., Kreuger, J., Holmborn, K., Lundin, L., Eriksson, I., Kjellen, L., & Claesson-Welsh, L. (2006). Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Developmental Cell, 10, 625–634.

    Article  CAS  PubMed  Google Scholar 

  84. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: a Cancer Journal for Clinicians, 57, 43–66.

    Google Scholar 

  85. Johansson, F. K., Brodd, J., Eklof, C., Ferletta, M., Hesselager, G., Tiger, C. F., Uhrbom, L., & Westermark, B. (2004). Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proceedings of the National Academy of Sciences of the United States of America, 101, 11334–11337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johnson, C. E., Crawford, B. E., Stavridis, M., Ten Dam, G., Wat, A. L., Rushton, G., Ward, C. M., Wilson, V., van Kuppevelt, T. H., Esko, J. D., et al. (2007). Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells, 25, 1913–1923.

    Article  CAS  PubMed  Google Scholar 

  87. Joyce, J. A., Freeman, C., Meyer-Morse, N., Parish, C. R., & Hanahan, D. (2005). A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene, 24, 4037–4051.

    Article  CAS  PubMed  Google Scholar 

  88. Kobayashi, M., Naomoto, Y., Nobuhisa, T., Okawa, T., Takaoka, M., Shirakawa, Y., Yamatsuji, T., Matsuoka, J., Mizushima, T., Matsuura, H., et al. (2006). Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation; Research in Biological Diversity, 74, 235–243.

    Article  CAS  PubMed  Google Scholar 

  89. Kool, M., Koster, J., Bunt, J., Hasselt, N. E., Lakeman, A., van Sluis, P., Troost, D., Meeteren, N. S., Caron, H. N., Cloos, J., et al. (2008). Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One, 3, e3088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kopec, M., Imiela, A., & Abramczyk, H. (2019). Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging. Scientific Reports, 9, 166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kozono, D., Li, J., Nitta, M., Sampetrean, O., Gonda, D., Kushwaha, D. S., Merzon, D., Ramakrishnan, V., Zhu, S., Zhu, K., et al. (2015). Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proceedings of the National Academy of Sciences of the United States of America, 112, E4055–E4064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kraushaar, D. C., Yamaguchi, Y., & Wang, L. (2010). Heparan sulfate is required for embryonic stem cells to exit from self-renewal. The Journal of Biological Chemistry, 285, 5907–5916.

    Article  CAS  PubMed  Google Scholar 

  93. Kundu, S., Xiong, A., Spyrou, A., Wicher, G., Marinescu, V. D., Edqvist, P. D., Zhang, L., Essand, M., Dimberg, A., Smits, A., et al. (2016). Heparanase promotes Glioma progression and is inversely correlated with patient survival. Molecular Cancer Research: MCR, 14, 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  94. Kwok, J. C., Dick, G., Wang, D., & Fawcett, J. W. (2011). Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology, 71, 1073–1089.

    Article  CAS  PubMed  Google Scholar 

  95. Labussiere, M., Sanson, M., Idbaih, A., & Delattre, J. Y. (2010). IDH1 gene mutations: A new paradigm in glioma prognosis and therapy? The Oncologist, 15, 196–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lamanna, W. C., Baldwin, R. J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T. H., Gallagher, J. T., von Figura, K., Dierks, T., & Merry, C. L. (2006). Heparan sulfate 6-O-endosulfatases: Discrete in vivo activities and functional co-operativity. The Biochemical Journal, 400, 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Langsdorf, A., Do, A. T., Kusche-Gullberg, M., Emerson, C. P., Jr., & Ai, X. (2007). Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Developmental Biology, 311, 464–477.

    Article  CAS  PubMed  Google Scholar 

  98. Lanner, F., Lee, K. L., Sohl, M., Holmborn, K., Yang, H., Wilbertz, J., Poellinger, L., Rossant, J., & Farnebo, F. (2010). Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells, 28, 191–200.

    CAS  PubMed  Google Scholar 

  99. Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L., & Rich, J. N. (2015). Cancer stem cells in glioblastoma. Genes & Development, 29, 1203–1217.

    Article  CAS  Google Scholar 

  100. Le Jan, S., Hayashi, M., Kasza, Z., Eriksson, I., Bishop, J. R., Weibrecht, I., Heldin, J., Holmborn, K., Jakobsson, L., Soderberg, O., et al. (2012). Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1255–1263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9, 391–403.

    Article  CAS  PubMed  Google Scholar 

  102. Leece, R., Xu, J., Ostrom, Q. T., Chen, Y., Kruchko, C., & Barnholtz-Sloan, J. S. (2017). Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro-Oncology, 19, 1553–1564.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lewis, K. D., Robinson, W. A., Millward, M. J., Powell, A., Price, T. J., Thomson, D. B., Walpole, E. T., Haydon, A. M., Creese, B. R., Roberts, K. L., et al. (2008). A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Investigational New Drugs, 26, 89–94.

    Article  CAS  PubMed  Google Scholar 

  104. Li, J. P., Gong, F., Hagner-McWhirter, A., Forsberg, E., Abrink, M., Kisilevsky, R., Zhang, X., & Lindahl, U. (2003). Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. The Journal of Biological Chemistry, 278, 28363–28366.

    Article  CAS  PubMed  Google Scholar 

  105. Lin, F., de Gooijer, M. C., Roig, E. M., Buil, L. C. M., Christner, S. M., Beumer, J. H., Würdinger, T., Beijnen, J. H., & van Tellingen, O. (2014). ABCB1, ABCG2, and PTEN determine the response of Glioblastoma to Temozolomide and ABT-888 therapy. Clinical Cancer Research, 20, 2703.

    Article  CAS  PubMed  Google Scholar 

  106. Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., & Matzuk, M. M. (2000). Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Developmental Biology, 224, 299–311.

    Article  CAS  PubMed  Google Scholar 

  107. Lindberg, N., Kastemar, M., Olofsson, T., Smits, A., & Uhrbom, L. (2009). Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene, 28, 2266–2275.

    Article  CAS  PubMed  Google Scholar 

  108. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization classification of Tumors of the central nervous system: A summary. Acta Neuropathologica, 131, 803–820.

    Article  PubMed  Google Scholar 

  109. Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marchetti, M., Vignoli, A., Russo, L., Balducci, D., Pagnoncelli, M., Barbui, T., & Falanga, A. (2008). Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin. Thrombosis Research, 121, 637–645.

    Article  CAS  PubMed  Google Scholar 

  111. Martin, G. A., Viskochil, D., Bollag, G., McCabe, P. C., Crosier, W. J., Haubruck, H., Conroy, L., Clark, R., O’Connell, P., Cawthon, R. M., et al. (1990). The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell, 63, 843–849.

    Article  CAS  PubMed  Google Scholar 

  112. Masola, V., Gambaro, G., Tibaldi, E., Brunati, A. M., Gastaldello, A., D’Angelo, A., Onisto, M., & Lupo, A. (2012). Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. The Journal of Biological Chemistry, 287, 1478–1488.

    Article  CAS  PubMed  Google Scholar 

  113. McLaughlin, D., Karlsson, F., Tian, N., Pratt, T., Bullock, S. L., Wilson, V. A., Price, D. J., & Mason, J. O. (2003). Specific modification of heparan sulphate is required for normal cerebral cortical development. Mechanisms of Development, 120, 1481–1488.

    Article  CAS  PubMed  Google Scholar 

  114. Molist, A., Romaris, M., Lindahl, U., Villena, J., Touab, M., & Bassols, A. (1998). Changes in glycosaminoglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. European Journal of Biochemistry, 254, 371–377.

    Article  CAS  PubMed  Google Scholar 

  115. Mondal, B., Patil, V., Shwetha, S. D., Sravani, K., Hegde, A. S., Arivazhagan, A., Santosh, V., Kanduri, M., & Somasundaram, K. (2017). Integrative functional genomic analysis identifies epigenetically regulated fibromodulin as an essential gene for glioma cell migration. Oncogene, 36, 71–83.

    Article  CAS  PubMed  Google Scholar 

  116. Morrissy, A. S., Cavalli, F. M. G., Remke, M., Ramaswamy, V., Shih, D. J. H., Holgado, B. L., Farooq, H., Donovan, L. K., Garzia, L., Agnihotri, S., et al. (2017). Spatial heterogeneity in medulloblastoma. Nature Genetics, 49, 780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mousa, S. A., & Mohamed, S. (2004). Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thrombosis and Haemostasis, 92, 627–633.

    Article  CAS  PubMed  Google Scholar 

  118. Mousa, S. A., & Petersen, L. J. (2009). Anti-cancer properties of low-molecular-weight heparin: Preclinical evidence. Thrombosis and Haemostasis, 102, 258–267.

    Article  CAS  PubMed  Google Scholar 

  119. Mueller, S., & Chang, S. (2009). Pediatric brain tumors: Current treatment strategies and future therapeutic approaches. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 6, 570–586.

    Article  CAS  Google Scholar 

  120. Nairn, A. V., Kinoshita-Toyoda, A., Toyoda, H., Xie, J., Harris, K., Dalton, S., Kulik, M., Pierce, J. M., Toida, T., Moremen, K. W., et al. (2007). Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. Journal of Proteome Research, 6, 4374–4387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Navarro, F. P., Fares, R. P., Sanchez, P. E., Nadam, J., Georges, B., Moulin, C., Morales, A., Pequignot, J. M., & Bezin, L. (2008). Brain heparanase expression is up-regulated during postnatal development and hypoxia-induced neovascularization in adult rats. Journal of Neurochemistry, 105, 34–45.

    Article  CAS  PubMed  Google Scholar 

  122. Nishiyama, A., Chang, A., & Trapp, B. D. (1999). NG2+ glial cells: A novel glial cell population in the adult brain. Journal of Neuropathology and Experimental Neurology, 58, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  123. Nobuhisa, T., Naomoto, Y., Okawa, T., Takaoka, M., Gunduz, M., Motoki, T., Nagatsuka, H., Tsujigiwa, H., Shirakawa, Y., Yamatsuji, T., et al. (2007). Translocation of heparanase into nucleus results in cell differentiation. Cancer Science, 98, 535–540.

    Article  CAS  PubMed  Google Scholar 

  124. Noroxe, D. S., Poulsen, H. S., & Lassen, U. (2016). Hallmarks of glioblastoma: A systematic review. ESMO open, 1, e000144.

    Article  PubMed  Google Scholar 

  125. Northcott, P. A., Buchhalter, I., Morrissy, A. S., Hovestadt, V., Weischenfeldt, J., Ehrenberger, T., Grobner, S., Segura-Wang, M., Zichner, T., Rudneva, V. A., et al. (2017). The whole-genome landscape of medulloblastoma subtypes. Nature, 547, 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science (New York, NY), 194, 23–28.

    Article  CAS  Google Scholar 

  127. Ohgaki, H., & Kleihues, P. (2007). Genetic pathways to primary and secondary glioblastoma. The American Journal of Pathology, 170, 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ostapoff, K. T., Awasthi, N., Kutluk Cenik, B., Hinz, S., Dredge, K., Schwarz, R. E., & Brekken, R. A. (2013). PG545, an angiogenesis and Heparanase inhibitor, reduces primary tumor growth and metastasis in experimental pancreatic Cancer. Molecular Cancer Therapeutics, 12, 1190–1201.

    Article  CAS  PubMed  Google Scholar 

  129. Parish, C. R., Freeman, C., Brown, K. J., Francis, D. J., & Cowden, W. B. (1999). Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Research, 59, 3433–3441.

    CAS  PubMed  Google Scholar 

  130. Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science (New York, N.Y.), 321, 1807–1812.

    Article  CAS  Google Scholar 

  131. Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (New York, N.Y.), 344, 1396–1401.

    Article  CAS  Google Scholar 

  132. Perry, J. R., Julian, J. A., Laperriere, N. J., Geerts, W., Agnelli, G., Rogers, L. R., Malkin, M. G., Sawaya, R., Baker, R., Falanga, A., et al. (2010). PRODIGE: A randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. Journal of Thrombosis and Haemostasis: JTH, 8, 1959–1965.

    Article  CAS  PubMed  Google Scholar 

  133. Peterson, E. J., Daniel, A. G., Katner, S. J., Bohlmann, L., Chang, C. W., Bezos, A., Parish, C. R., von Itzstein, M., Berners-Price, S. J., & Farrell, N. P. (2017). Antiangiogenic platinum through glycan targeting. Chemical Science, 8, 241–252.

    Article  CAS  PubMed  Google Scholar 

  134. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., Misra, A., Nigro, J. M., Colman, H., Soroceanu, L., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9, 157–173.

    Article  CAS  PubMed  Google Scholar 

  135. Phillips, J. J., Huillard, E., Robinson, A. E., Ward, A., Lum, D. H., Polley, M. Y., Rosen, S. D., Rowitch, D. H., & Werb, Z. (2012). Heparan sulfate sulfatase SULF2 regulates PDGFRalpha signaling and growth in human and mouse malignant glioma. The Journal of Clinical Investigation, 122, 911–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Phoenix, T. N., Patmore, D. M., Boop, S., Boulos, N., Jacus, M. O., Patel, Y. T., Roussel, M. F., Finkelstein, D., Goumnerova, L., Perreault, S., et al. (2016). Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell, 29, 508–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pickford, C. E., Holley, R. J., Rushton, G., Stavridis, M. P., Ward, C. M., & Merry, C. L. (2011). Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells, 29, 629–640.

    Article  CAS  PubMed  Google Scholar 

  138. Polkinghorn, W. R., & Tarbell, N. J. (2007). Medulloblastoma: Tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nature Clinical Practice Oncology, 4, 295.

    Article  CAS  PubMed  Google Scholar 

  139. Pollard, S. M., Yoshikawa, K., Clarke, I. D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., et al. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell, 4, 568–580.

    Article  CAS  PubMed  Google Scholar 

  140. Pratt, T., Conway, C. D., Tian, N. M., Price, D. J., & Mason, J. O. (2006). Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 6911–6923.

    Article  CAS  Google Scholar 

  141. Ramani, V. C., Zhan, F., He, J., Barbieri, P., Noseda, A., Tricot, G., & Sanderson, R. D. (2016). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 7, 1598–1607.

    Article  PubMed  Google Scholar 

  142. Rapraeger, A. C., Krufka, A., & Olwin, B. B. (1991). Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science (New York, N.Y.), 252, 1705–1708.

    Article  CAS  Google Scholar 

  143. Raybaud, C., Ramaswamy, V., Taylor, M. D., & Laughlin, S. (2015). Posterior fossa tumors in children: Developmental anatomy and diagnostic imaging. Child’s Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery, 31, 1661–1676.

    Article  Google Scholar 

  144. Reichsman, F., Smith, L., & Cumberledge, S. (1996). Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. The Journal of Cell Biology, 135, 819–827.

    Article  CAS  PubMed  Google Scholar 

  145. Reiland, J., Kempf, D., Roy, M., Denkins, Y., & Marchetti, D. (2006). FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia, 8, 596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ringvall, M., Ledin, J., Holmborn, K., van Kuppevelt, T., Ellin, F., Eriksson, I., Olofsson, A. M., Kjellen, L., & Forsberg, E. (2000). Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. The Journal of Biological Chemistry, 275, 25926–25930.

    Article  CAS  PubMed  Google Scholar 

  147. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., Penco, S., Pisano, C., Carminati, P., Tortoreto, M., et al. (2011). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the Heparanase/Syndecan-1 Axis. Clinical Cancer Research, 17, 1382–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Robins, H. I., O’Neill, A., Gilbert, M., Olsen, M., Sapiente, R., Berkey, B., & Mehta, M. (2008). Effect of dalteparin and radiation on survival and thromboembolic events in glioblastoma multiforme: A phase II ECOG trial. Cancer Chemotherapy and Pharmacology, 62, 227–233.

    Article  CAS  PubMed  Google Scholar 

  149. Rubinfeld, H., Cohen-Kaplan, V., Nass, D., Ilan, N., Meisel, S., Cohen, Z. R., Hadani, M., Vlodavsky, I., & Shimon, I. (2011). Heparanase is highly expressed and regulates proliferation in GH-secreting pituitary tumor cells. Endocrinology, 152, 4562–4570.

    Article  CAS  PubMed  Google Scholar 

  150. Ruppert, R., Hoffmann, E., & Sebald, W. (1996). Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. European Journal of Biochemistry, 237, 295–302.

    Article  CAS  PubMed  Google Scholar 

  151. Sainio, A., & Jarvelainen, H. (2014). Extracellular matrix macromolecules: Potential tools and targets in cancer gene therapy. Molecular and Cellular Therapies, 2, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sanden, E., Eberstal, S., Visse, E., Siesjo, P., & Darabi, A. (2015). A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Scientific Reports, 5, 12218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sandvig, A., Berry, M., Barrett, L. B., Butt, A., & Logan, A. (2004). Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: Expression, receptor signaling, and correlation with axon regeneration. Glia, 46, 225–251.

    Article  PubMed  Google Scholar 

  154. Schnoor, R., Maas, S. L., & Broekman, M. L. (2015). Heparin in malignant glioma: Review of preclinical studies and clinical results. Journal of Neuro-Oncology, 124, 151–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., Sturm, D., Fontebasso, A. M., Quang, D. A., Tonjes, M., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482, 226–231.

    Article  CAS  PubMed  Google Scholar 

  156. Segerman, A., Niklasson, M., Haglund, C., Bergstrom, T., Jarvius, M., Xie, Y., Westermark, A., Sonmez, D., Hermansson, A., Kastemar, M., et al. (2016). Clonal variation in drug and radiation response among Glioma-initiating cells is linked to proneural-Mesenchymal transition. Cell Reports, 17, 2994–3009.

    Article  CAS  PubMed  Google Scholar 

  157. Shen, Y.-C., Lin, Z.-Z., Hsu, C.-H., Hsu, C., Shao, Y.-Y., & Cheng, A.-L. (2013). Clinical trials in hepatocellular carcinoma: an update. Liver Cancer, 2, 345–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shih, A. H., & Holland, E. C. (2006). Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Letters, 232, 139–147.

    Article  CAS  PubMed  Google Scholar 

  159. Shimokawa, K., Kimura-Yoshida, C., Nagai, N., Mukai, K., Matsubara, K., Watanabe, H., Matsuda, Y., Mochida, K., & Matsuo, I. (2011). Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Developmental Cell, 21, 257–272.

    Article  CAS  PubMed  Google Scholar 

  160. Shoshan, Y., Nishiyama, A., Chang, A., Mork, S., Barnett, G. H., Cowell, J. K., Trapp, B. D., & Staugaitis, S. M. (1999). Expression of oligodendrocyte progenitor cell antigens by gliomas: Implications for the histogenesis of brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 96, 10361–10366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shteingauz, A., Boyango, I., Naroditsky, I., Hammond, E., Gruber, M., Doweck, I., Ilan, N., & Vlodavsky, I. (2015). Heparanase enhances tumor growth and Chemoresistance by promoting autophagy. Cancer Research, 75, 3946–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shworak, N. W., HajMohammadi, S., de Agostini, A. I., & Rosenberg, R. D. (2002). Mice deficient in heparan sulfate 3-O-sulfotransferase-1: Normal hemostasis with unexpected perinatal phenotypes. Glycoconjugate Journal, 19, 355–361.

    Article  CAS  PubMed  Google Scholar 

  163. Silver, D. J., Siebzehnrubl, F. A., Schildts, M. J., Yachnis, A. T., Smith, G. M., Smith, A. A., Scheffler, B., Reynolds, B. A., Silver, J., & Steindler, D. A. (2013). Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 15603–15617.

    Article  CAS  Google Scholar 

  164. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., & Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

    CAS  PubMed  Google Scholar 

  165. Sinnappah-Kang, N. D., Kaiser, A. J., Blust, B. E., Mrak, R. E., & Marchetti, D. (2005). Heparanase, TrkC and p75NTR: Their functional involvement in human medulloblastoma cell invasion. International Journal of Oncology, 27, 617–626.

    CAS  PubMed  Google Scholar 

  166. Skowron, P., Ramaswamy, V., & Taylor, M. D. (2015). Genetic and molecular alterations across Medulloblastoma subgroups. Journal of Molecular Medicine (Berlin, Germany), 93, 1075–1084.

    Article  CAS  Google Scholar 

  167. Smiley, S., Henry, D., and Wong, M. (2006). The Mechanism of Low Molecular Weight Heparin (LMWH) inhibition of tumor growth. Paper presented at: ASCO Annual Meeting Proceedings.

    Google Scholar 

  168. Spyrou, A., Kundu, S., Haseeb, L., Yu, D., Olofsson, T., Dredge, K., Hammond, E., Barash, U., Vlodavsky, I., & Forsberg-Nilsson, K. (2017). Inhibition of Heparanase in Pediatric brain tumor cells attenuates their proliferation, invasive capacity, and in vivo tumor growth. Molecular Cancer Therapeutics, 16, 1705–1716.

    Article  CAS  PubMed  Google Scholar 

  169. Steck, P. A., Moser, R. P., Bruner, J. M., Liang, L., Freidman, A. N., Hwang, T. L., & Yung, W. K. (1989). Altered expression and distribution of heparan sulfate proteoglycans in human gliomas. Cancer Research, 49, 2096–2103.

    CAS  PubMed  Google Scholar 

  170. Stevenson, J. L., Choi, S. H., & Varki, A. (2005). Differential metastasis inhibition by clinically relevant levels of heparins—Correlation with Selectin inhibition, not antithrombotic activity. Clinical Cancer Research, 11, 7003–7011.

    Article  CAS  PubMed  Google Scholar 

  171. Stickens, D., Zak, B. M., Rougier, N., Esko, J. D., & Werb, Z. (2005). Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development, 132, 5055–5068.

    Article  CAS  PubMed  Google Scholar 

  172. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352, 987–996.

    Article  CAS  PubMed  Google Scholar 

  173. Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D. A., Jones, D. T., Konermann, C., Pfaff, E., Tonjes, M., Sill, M., Bender, S., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22, 425–437.

    Article  CAS  PubMed  Google Scholar 

  174. Su, G., Meyer, K., Nandini, C. D., Qiao, D., Salamat, S., & Friedl, A. (2006). Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. The American Journal of Pathology, 168, 2014–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Svendsen, A., Verhoeff, J. J., Immervoll, H., Brogger, J. C., Kmiecik, J., Poli, A., Netland, I. A., Prestegarden, L., Planaguma, J., Torsvik, A., et al. (2011). Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathologica, 122, 495–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Takamiya, Y., Abe, Y., Tanaka, Y., Tsugu, A., Kazuno, M., Oshika, Y., Maruo, K., Ohnishi, Y., Sato, O., Yamazaki, H., et al. (1997). Murine P-glycoprotein on stromal vessels mediates multidrug resistance in intracerebral human glioma xenografts. British Journal of Cancer, 76, 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. The, I., Bellaiche, Y., & Perrimon, N. (1999). Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Molecular Cell, 4, 633–639.

    Article  CAS  PubMed  Google Scholar 

  178. Tran, V. M., Wade, A., McKinney, A., Chen, K., Lindberg, O. R., Engler, J. R., Persson, A. I., & Phillips, J. J. (2017). Heparan Sulfate Glycosaminoglycans in Glioblastoma promote tumor invasion. Molecular Cancer Research: MCR, 15, 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  179. Ueno, Y., Yamamoto, M., Vlodavsky, I., Pecker, I., Ohshima, K., & Fukushima, T. (2005). Decreased expression of heparanase in glioblastoma multiforme. Journal of Neurosurgery, 102, 513–521.

    Article  PubMed  Google Scholar 

  180. Ushakov, V. S., Tsidulko, A. Y., de La Bourdonnaye, G., Kazanskaya, G. M., Volkov, A. M., Kiselev, R. S., Kobozev, V. V., Kostromskaya, D. V., Gaytan, A. S., Krivoshapkin, A. L., et al. (2017). Heparan Sulfate biosynthetic system is inhibited in human Glioma due to EXT1/2 and HS6ST1/2 Down-regulation. International Journal of Molecular Sciences, 18(11).

    Google Scholar 

  181. Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17, 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vladoiu, M. C., El-Hamamy, I., Donovan, L. K., Farooq, H., Holgado, B. L., Sundaravadanam, Y., Ramaswamy, V., Hendrikse, L. D., Kumar, S., Mack, S. C., et al. (2019). Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature.

    Google Scholar 

  183. Vlodavsky, I., Beckhove, P., Lerner, I., Pisano, C., Meirovitz, A., Ilan, N., & Elkin, M. (2012). Significance of heparanase in cancer and inflammation. Cancer Microenvironment: Official Journal of the International Cancer Microenvironment Society, 5, 115–132.

    Article  CAS  Google Scholar 

  184. Vlodavsky, I., Blich, M., Li, J. P., Sanderson, R. D., & Ilan, N. (2013). Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biology: Journal of the International Society for Matrix Biology, 32, 241–251.

    Article  CAS  Google Scholar 

  185. Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. The Journal of Clinical Investigation, 108, 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wade, A., Robinson, A. E., Engler, J. R., Petritsch, C., James, C. D., & Phillips, J. J. (2013). Proteoglycans and their roles in brain cancer. The FEBS Journal, 280, 2399–2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, D., & Fawcett, J. (2012). The perineuronal net and the control of CNS plasticity. Cell and Tissue Research, 349, 147–160.

    Article  PubMed  Google Scholar 

  188. Wang, J., Garancher, A., Ramaswamy, V., & Wechsler-Reya, R. J. (2018). Medulloblastoma: From molecular subgroups to molecular targeted therapies. Annual Review of Neuroscience, 41, 207–232.

    Article  CAS  PubMed  Google Scholar 

  189. Wang, Q., Hu, B., Hu, X., Kim, H., Squatrito, M., Scarpace, L., de Carvalho, A.C., Lyu, S., Li, P., Li, Y., et al. (2017). Tumor evolution of Glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 e46.

    Google Scholar 

  190. Wang, Q., Yang, L., Alexander, C., & Temple, S. (2012). The niche factor syndecan-1 regulates the maintenance and proliferation of neural progenitor cells during mammalian cortical development. PLoS One, 7, e42883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Watanabe, A., Mabuchi, T., Satoh, E., Furuya, K., Zhang, L., Maeda, S., & Naganuma, H. (2006). Expression of syndecans, a heparan sulfate proteoglycan, in malignant gliomas: Participation of nuclear factor-kappaB in upregulation of syndecan-1 expression. Journal of Neuro-Oncology, 77, 25–32.

    Article  CAS  PubMed  Google Scholar 

  192. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer, 12, 401–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Winterhoff, B., Freyer, L., Hammond, E., Giri, S., Mondal, S., Roy, D., Teoman, A., Mullany, S. A., Hoffmann, R., von Bismarck, A., et al. (2015). PG545 enhances anti-cancer activity of chemotherapy in ovarian models and increases surrogate biomarkers such as VEGF in preclinical and clinical plasma samples. European Journal of Cancer, 51, 879–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wu, L., Viola, C. M., Brzozowski, A. M., Davies, G. J. (2016). Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol, 22(12), 1016–1022. https://doi.org/10.1038/nsmb.3136. Epub 2015 Nov 16.

  195. Xie, Y., Bergstrom, T., Jiang, Y., Johansson, P., Marinescu, V. D., Lindberg, N., Segerman, A., Wicher, G., Niklasson, M., Baskaran, S., et al. (2015). The human Glioblastoma cell culture resource: Validated cell models representing all molecular subtypes. eBioMedicine, 2, 1351–1363.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Xiong, A., Kundu, S., Forsberg, M., Xiong, Y., Bergstrom, T., Paavilainen, T., Kjellen, L., Li, J. P., & Forsberg-Nilsson, K. (2017). Heparanase confers a growth advantage to differentiating murine embryonic stem cells, and enhances oligodendrocyte formation. Matrix Biology: Journal of the International Society for Matrix Biology, 62, 92–104.

    Article  CAS  Google Scholar 

  197. Xiong, A., Kundu, S., & Forsberg-Nilsson, K. (2014). Heparan sulfate in the regulation of neural differentiation and glioma development. The FEBS Journal, 281, 4993–5008.

    Article  CAS  PubMed  Google Scholar 

  198. Xu, Y., Yuan, J., Zhang, Z., Lin, L., & Xu, S. (2012). Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis. Molecular Biology Reports, 39, 8979–8985.

    Article  CAS  PubMed  Google Scholar 

  199. Yang, Z. J., Ellis, T., Markant, S. L., Read, T. A., Kessler, J. D., Bourboulas, M., Schuller, U., Machold, R., Fishell, G., Rowitch, D. H., et al. (2008). Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell, 14, 135–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., & Ornitz, D. M. (1991). Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 64, 841–848.

    Article  CAS  PubMed  Google Scholar 

  201. Zcharia, E., Jia, J., Zhang, X., Baraz, L., Lindahl, U., Peretz, T., Vlodavsky, I., & Li, J. P. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One, 4, e5181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Zcharia, E., Metzger, S., Chajek-Shaul, T., Aingorn, H., Elkin, M., Friedmann, Y., Weinstein, T., Li, J. P., Lindahl, U., & Vlodavsky, I. (2004). Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 252–263.

    Article  CAS  Google Scholar 

  203. Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial-mesenchymal transitions. The Journal of Clinical Investigation, 119, 1429–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zetser, A., Bashenko, Y., Miao, H. Q., Vlodavsky, I., & Ilan, N. (2003). Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Research, 63, 7733–7741.

    CAS  PubMed  Google Scholar 

  205. Zhou, H., Roy, S., Cochran, E., Zouaoui, R., Chu, C. L., Duffner, J., Zhao, G., Smith, S., Galcheva-Gargova, Z., & Karlgren, J. (2011). M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One, 6, e21106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhu, H., Carpenter, R. L., Han, W., & Lo, H. W. (2014). The GLI1 splice variant TGLI1 promotes glioblastoma angiogenesis and growth. Cancer Letters, 343, 51–61.

    Article  CAS  PubMed  Google Scholar 

  207. Zincircioglu, S. B., Kaplan, M. A., Isikdogan, A., Cil, T., Karadayi, B., Dirier, A., Kucukoner, M., Inal, A., Yildiz, I., Aggil, F., et al. (2012). Contribution of low-molecular weight heparin addition to concomitant chemoradiotherapy in the treatment of glioblastoma multiforme. Journal of BUON: Official Journal of the Balkan Union of Oncology, 17, 124–127.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to K. Forsberg-Nilsson from the Swedish Cancer Society, Swedish Research Council, The Swedish Childhood Cancer Fund and from the European Union’s Horizon 2020 research and innovation program under the Marie Skøodowska-Curie grant agreement No. 645756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Forsberg-Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiong, A., Spyrou, A., Forsberg-Nilsson, K. (2020). Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_14

Download citation

Publish with us

Policies and ethics