Skip to main content
Book cover

Heparanase pp 351–363Cite as

Involvement of Heparanase in Gastric Cancer Progression and Immunotherapy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Heparanase is upregulated in various tumors, and its expression is closely associated with tumor growth, angiogenesis and metastasis, which accomplishes this mainly through degrading heparan sulfate and releasing heparin-binding growth factors thereby influencing multiple signaling pathways. In addition to its enzymatic degrading activity, heparanase can act via its non-enzymatic mechanisms that directly regulate various signaling. This review mainly focuses on the expression levels and role of heparanase in gastric cancer, and multiple genes and mechanisms regulating heparanase expression in gastric cancer. Furthermore, the development of heparanase-targeted immunotherapy and its potential application for treating gastric cancer are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Levy-Adam, F., Miao, H. Q., Heinrikson, R. L., Vlodavsky, I., & Ilan, N. (2003). Heterodimer formation is essential for heparanase enzymatic activity. Biochemical and Biophysical Research Communications, 308(4), 885–891.

    Article  CAS  PubMed  Google Scholar 

  2. McKenzie E, Young K, Hircock M, Bennett J, Bhaman M, Felix R, Turner P, Stamps A, McMillan D, Saville G, Ng S, Mason S, Snell D, Schofield D, Gong H, Townsend R, Gallagher J, Page M, Parekh R, Stubberfield C. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. The Biochemical Journal 2003; 373(Pt 2):423–435.

    Google Scholar 

  3. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  4. Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., & Zako, M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry, 68, 729–777.

    Article  CAS  PubMed  Google Scholar 

  5. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.

    Article  CAS  Google Scholar 

  6. Iozzo, R. V., & Sanderson, R. D. (2011). Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. Journal of Cellular and Molecular Medicine, 15(5), 1013–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanderson, R. D. (2001). Heparan sulfate proteoglycans in invasion and metastasis. Seminars in Cell & Developmental Biology, 12(2), 89–98.

    Article  CAS  Google Scholar 

  8. Tímár, J., Lapis, K., Dudás, J., Sebestyén, A., Kopper, L., & Kovalszky, I. (2002). Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Seminars in Cancer Biology, 12(3), 173–186.

    Article  PubMed  CAS  Google Scholar 

  9. Meirovitz, A., Goldberg, R., Binder, A., Rubinstein, A. M., Hermano, E., & Elkin, M. (2013). Heparanase in inflammation and inflammation-associated cancer. The FEBS Journal, 280(10), 2307–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ateeq, B., Unterberger, A., Szyf, M., & Rabbani, S. A. (2008). Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia, 10(3), 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shteper, P. J., Zcharia, E., Ashhab, Y., Peretz, T., Vlodavsky, I., & Ben-Yehuda, D. (2003). Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene, 22(49), 7737–7749.

    Article  CAS  PubMed  Google Scholar 

  12. Ogishima, T., Shiina, H., Breault, J. E., Terashima, M., Honda, S., Enokida, H., Urakami, S., Tokizane, T., Kawakami, T., Ribeiro-Filho, L. A., Fujime, M., Kane, C. J., Carroll, P. R., Igawa, M., & Dahiya, R. (2005). Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 24(45), 6765–6772.

    Article  CAS  PubMed  Google Scholar 

  13. Friedmann, Y., Vlodavsky, I., Aingorn, H., Aviv, A., Peretz, T., Pecker, I., & Pappo, O. (2000). Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. The American Journal of Pathology, 157(4), 1167–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gohji, K., Okamoto, M., Kitazawa, S., Toyoshima, M., Dong, J., Katsuoka, Y., & Nakajima, M. (2001). Heparanase protein and gene expression in bladder cancer. The Journal of Urology, 166(4), 1286–1290.

    Article  CAS  PubMed  Google Scholar 

  15. Koliopanos, A., Friess, H., Kleeff, J., Shi, X., Liao, Q., Pecker, I., Vlodavsky, I., Zimmermann, A., & Büchler, M. W. (2001). Heparanase expression in primary and metastatic pancreatic cancer. Cancer Research, 61(12), 4655–4659.

    CAS  PubMed  Google Scholar 

  16. Hong, X., Nelson, K. K., deCarvalho, A. C., & Kalkanis, S. N. (2010). Heparanase expression of glioma in human and animal models. Journal of Neurosurgery, 113(2), 261–269.

    Article  CAS  PubMed  Google Scholar 

  17. El-Assal, O. N., Yamanoi, A., Ono, T., Kohno, H., & Nagasue, N. (2001). The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clinical Cancer Research, 7(5), 1299–1305.

    CAS  PubMed  Google Scholar 

  18. Masola, V., Maran, C., Tassone, E., Zin, A., Rosolen, A., & Onisto, M. (2009). Heparanase activity in alveolar and embryonal rhabdomyosarcoma: Implications for tumor invasion. BMC Cancer, 9, 304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cohen, I., Pappo, O., Elkin, M., San, T., Bar-Shavit, R., Hazan, R., Peretz, T., Vlodavsky, I., & Abramovitch, R. (2006). Heparanase promotes growth, angiogenesis and survival of primary breast tumors. International Journal of Cancer, 118(7), 1609–1617.

    Article  CAS  PubMed  Google Scholar 

  20. Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M. L., Ledbetter, S., Ornitz, D. M., & Bernfield, M. (1998). Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Medicine, 4(6), 691–697.

    Article  CAS  PubMed  Google Scholar 

  21. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.

    Article  CAS  Google Scholar 

  22. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: A key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.

    CAS  PubMed  Google Scholar 

  23. Kelly, T., Miao, H. Q., Yang, Y., Navarro, E., Kussie, P., Huang, Y., MacLeod, V., Casciano, J., Joseph, L., Zhan, F., Zangari, M., Barlogie, B., Shaughnessy, J., & Sanderson, R. D. (2003). High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 63(24), 8749–8756.

    CAS  PubMed  Google Scholar 

  24. Vlodavsky, I., Beckhove, P., Lerner, I., Pisano, C., Meirovitz, A., Ilan, N., & Elkin, M. (2012). Significance of heparanase in cancer and inflammation. Cancer Microenvironment, 5(2), 115–132.

    Article  CAS  PubMed  Google Scholar 

  25. Mahtouk, K., Hose, D., Raynaud, P., Hundemer, M., Jourdan, M., Jourdan, E., Pantesco, V., Baudard, M., De Vos, J., Larroque, M., Moehler, T., Rossi, J. F., Rème, T., Goldschmidt, H., & Klein, B. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109(11), 4914–4923.

    Article  CAS  PubMed  Google Scholar 

  26. Edovitsky, E., Elkin, M., Zcharia, E., Peretz, T., & Vlodavsky, I. (2004). Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. Journal of the National Cancer Institute, 96(16), 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  27. Cassinelli, G., Lanzi, C., Tortoreto, M., Cominetti, D., Petrangolini, G., Favini, E., Zaffaroni, N., Pisano, C., Penco, S., Vlodavsky, I., & Zunino, F. (2013). Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochemical Pharmacology, 85(10), 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  28. Dredge, K., Hammond, E., Handley, P., Gonda, T. J., Smith, M. T., Vincent, C., Brandt, R., Ferro, V., & Bytheway, I. (2011). PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. British Journal of Cancer, 104(4), 635–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., Penco, S., Pisano, C., Carminati, P., Tortoreto, M., Zunino, F., Vlodavsky, I., Sanderson, R. D., & Yang, Y. (2011). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17(6), 1382–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meirovitz, A., Hermano, E., Lerner, I., Zcharia, E., Pisano, C., Peretz, T., & Elkin, M. (2011). Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Research, 71(7), 2772–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong, Z., Lü, M. H., Fan, Y. H., Cao, Y. L., Hu, C. J., Wu, Y. Y., Wang, S. M., Luo, G., Fang, D. C., Li, C., & Yang, S. M. (2012). Downregulation of heparanase by RNA interference inhibits invasion and tumorigenesis of hepatocellular cancer cells in vitro and in vivo. International Journal of Oncology, 40(5), 1601–1609.

    CAS  PubMed  Google Scholar 

  32. Masola, V., Secchi, M. F., Gambaro, G., & M, O. (2014). Heparanase as a target in cancer therapy. Current Cancer Drug Targets, 14(3), 286–293.

    Article  CAS  PubMed  Google Scholar 

  33. Pisano, C., Vlodavsky, I., Ilan, N., & Zunino, F. (2014). The potential of heparanase as a therapeutic target in cancer. Biochemical Pharmacology, 89(1), 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, J. Q., Zhan, W. H., He, Y. L., Peng, J. S., Wang, J. P., Cai, S. R., & Ma, J. P. (2004). Expression of heparanase gene, CD44v6, MMP-7 and nm23 protein and their relationship with the invasion and metastasis of gastric carcinomas. World Journal of Gastroenterology, 10(6), 776–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, W., Nakamura, Y., Tsujimoto, M., Sato, M., Wang, X., Kurozumi, K., Nakahara, M., Nakao, K., Nakamura, M., Mori, I., & Kakudo, K. (2002). Heparanase: A key enzyme in invasion and metastasis of gastric carcinoma. Modern Pathology, 15(6), 593–598.

    Article  PubMed  Google Scholar 

  36. Endo, K., Maejara, U., Baba, H., Tokunaga, E., Koga, T., Ikeda, Y., Toh, Y., Kohnoe, S., Okamura, T., Nakajima, M., & Sugimachi, K. (2001). Heparanase gene expression and metastatic potential in human gastric cancer. Anticancer Research, 21(5), 3365–3369.

    CAS  PubMed  Google Scholar 

  37. Tang, B., Xie, R., Qin, Y., Xiao, Y. F., Yong, X., Zheng, L., Dong, H., & Yang, S. M. (2016). Human telomerase reverse transcriptase (hTERT) promotes gastric cancer invasion through cooperating with c-Myc to upregulate heparanase expression. Oncotarget, 7(10), 11364–11379.

    Article  PubMed  Google Scholar 

  38. Shah, M. A., & Ajani, J. A. (2010). Gastric cancer—an enigmatic and heterogeneous disease. Journal of the American Medical Association, 303(17), 1753–1754.

    Article  CAS  PubMed  Google Scholar 

  39. Eccles, S. A. (1999). Heparanase: Breaking down barriers in tumors. Nature Medicine, 5(7), 735–736.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Z., Zhang, X., Xu, H., Zhou, X., Jiang, L., & Lu, C. (2005). Detection of peritoneal micrometastasis by reverse transcriptase-polymerase chain reaction for heparanase mRNA and cytology in peritoneal wash samples. Journal of Surgical Oncology, 90(2), 59–65.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Z., Xu, H., Jiang, L., Zhou, X., Lu, C., & Zhang, X. (2005). Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Modern Pathology, 18(2), 205–211.

    Article  CAS  PubMed  Google Scholar 

  42. Xie, Z. J., Liu, Y., Jia, L. M., & He, Y. C. (2008). Heparanase expression, degradation of basement membrane and low degree of infiltration by immunocytes correlate with invasion and progression of human gastric cancer. World Journal of Gastroenterology, 14(24), 3812–3818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao, N. B., Tang, B., Wang, G. Z., Xie, R., Hu, C. J., Wang, S. M., Wu, Y. Y., Liu, E., Xie, X., & Yang, S. M. (2015). Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis. Cancer Letters, 361(1), 57–66.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, L., Jiang, G., Mei, H., Pu, J., Dong, J., Hou, X., & Tong, Q. (2010). Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells. BMC Cancer, 10, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, X. M., Shen, Z. H., Liu, Z. Y., Wang, F., Hai, L., Gao, L. T., & Wang, H. S. (2014). Heparanase promotes human gastric cancer cells migration and invasion by increasing Src and p38 phosphorylation expression. International Journal of Clinical and Experimental Pathology, 7(9), 5609–5621.

    PubMed  PubMed Central  Google Scholar 

  46. Cao, H. J., Fang, Y., Zhang, X., Chen, W. J., Zhou, W. P., Wang, H., Wang, L. B., & Wu, J. M. (2005). Tumor metastasis and the reciprocal regulation of heparanase gene expression by nuclear factor kappa B in human gastric carcinoma tissue. World Journal of Gastroenterology, 11(6), 903–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang, C., Chen, X., Alattar, M., Wei, J., & Liu, H. (2015). MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer. Cancer Gene Therapy, 22(6), 291–301.

    Article  CAS  PubMed  Google Scholar 

  48. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., & Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769–773.

    Article  CAS  PubMed  Google Scholar 

  49. Shi, J., Chen, P., Sun, J., Song, Y., Ma, B., Gao, P., Chen, X., & Wang, Z. (2017). MicroRNA-1258: An invasion and metastasis regulator that targets heparanase in gastric cancer. Oncology Letters, 13(5), 3739–3745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng, N., Zhang, L., & Yang, S. (2018). MicroRNA-429 decreases the invasion ability of gastric cancer cell line BGC-823 by downregulating the expression of heparanase. Experimental and Therapeutic Medicine, 15(2), 1927–1933.

    CAS  PubMed  Google Scholar 

  51. Zheng, L., Jiao, W., Song, H., Qu, H., Li, D., Mei, H., Chen, Y., Yang, F., Li, H., Huang, K., & Tong, Q. (2016). miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death & Disease, 7(9), e2382.

    Article  CAS  Google Scholar 

  52. Zhang, Y. F., Tang, X. D., Gao, J. H., Fang, D. C., & Yang, S. M. (2011). Heparanase: A universal immunotherapeutic target in human cancers. Drug Discovery Today, 16(9–10), 412–417.

    Article  PubMed  CAS  Google Scholar 

  53. Liu, C. C., Yang, H., Zhang, R., Zhao, J. J., & Hao, D. J. (2017). Tumour-associated antigens and their anti-cancer applications. European Journal of Cancer Care, 26(5).

    Google Scholar 

  54. Martinez, M., & Moon, E. K. (2019). CAR T cells for solid Tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 10, 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van den Broek, M., von Boehmer, L., & Knuth, A. (2010). Developments in cancer immunotherapy. Digestive Diseases, 28(1), 51–56.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou, G., Lu, Z., McCadden, J. D., Levitsky, H. I., & Marson, A. L. (2004). Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. The Journal of Experimental Medicine, 200(12), 1581–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vlodavsky, I., Elkin, M., Abboud-Jarrous, G., Levi-Adam, F., Fuks, L., Shafat, I., & Ilan, N. (2008). Heparanase: One molecule with multiple functions in cancer progression. Connective Tissue Research, 49(3), 207–210.

    Article  CAS  PubMed  Google Scholar 

  58. Arvatz, G., Weissmann, M., Ilan, N., & Vlodavsky, I. (2016). Heparanase and cancer progression: New directions, new promises. Human Vaccines & Immunotherapeutics, 12(9), 2253–2256.

    Article  Google Scholar 

  59. Janikashvili, N., Larmonier, N., & Katsanis, E. (2010). Personalized dendritic cell-based tumor immunotherapy. Immunotherapy, 2(1), 57–68.

    Article  CAS  PubMed  Google Scholar 

  60. Banchereau, J., & Palucka, A. K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nature Reviews. Immunology, 5(4), 296–306.

    Article  CAS  PubMed  Google Scholar 

  61. Cai, Y. G., Fang, D. C., Chen, L., Tang, X. D., Chen, T., Yu, S. T., Luo, Y. H., Xiong, Z., Wang, D. X., & Yang, S. M. (2007). Dendritic cells reconstituted with a human heparanase gene induce potent cytotoxic T-cell responses against gastric tumor cells in vitro. Tumour Biology, 28(4), 238–246.

    Article  PubMed  Google Scholar 

  62. Andersen, M. H., Schrama, D., Thor Straten, P., & Becker, J. C. (2006). Cytotoxic T cells. The Journal of Investigative Dermatology, 126(1), 32–41.

    Article  CAS  PubMed  Google Scholar 

  63. Lundegaard, C., Nielsen, M., & Lund, O. (2006). The validity of predicted T-cell epitopes. Trends in Biotechnology, 24(12), 537–538.

    Article  CAS  PubMed  Google Scholar 

  64. Rammensee, H. G., Falk, K., & Rötzschke, O. (1993). Peptides naturally presented by MHC class I molecules. Annual Review of Immunology, 11, 213–244.

    Article  CAS  PubMed  Google Scholar 

  65. Lundegaard, C., Nielsen, M., & Lund, O. (2006). The validity of predicted T-cell epitopes. Trends in Biotechnology, 24(12), 537–538.

    Article  CAS  PubMed  Google Scholar 

  66. Eisenbach, L., Bar-Haim, E., & El-Shami, K. (2000). Antitumor vaccination using peptide based vaccines. Immunology Letters, 74(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  67. Sommerfeldt, N., Beckhove, P., Ge, Y., Schütz, F., Choi, C., Bucur, M., Domschke, C., Sohn, C., Schneeweis, A., Rom, J., Pollmann, D., Leucht, D., Vlodavsky, I., & Schirrmacher, V. (2006). Heparanase: A new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Research, 66(15), 7716–7723.

    Article  CAS  PubMed  Google Scholar 

  68. Chen, T., Tang, X. D., Wan, Y., Chen, L., Yu, S. T., Xiong, Z., Fang, D. C., Liang, G. P., & Yang, S. M. (2008). HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia, 10(9), 977–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tang, X. D., Wan, Y., Chen, L., Chen, T., Yu, S. T., Xiong, Z., Fang, D. C., Liang, G. P., & Yang, S. M. (2008). H-2Kb-restricted CTL epitopes from mouse heparanase elicit an antitumor immune response in vivo. Cancer Research, 68(5), 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  70. Tang, X. D., Liang, G. P., Li, C., Wan, Y., Chen, T., Chen, L., Yu, S. T., Xiong, Z., Fang, D. C., Wang, G. Z., & Yang, S. M. (2010). Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunology, Immunotherapy, 59(7), 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  71. van der Burg, S. H., Bijker, M. S., Welters, M. J., Offringa, R., & Melief, C. J. (2006). Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Advanced Drug Delivery Reviews, 58(8), 916–930.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, G. Z., Tang, X. D., Lü, M. H., Gao, J. H., Liang, G. P., Li, N., Li, C. Z., Wu, Y. Y., Chen, L., Cao, Y. L., Fang, D. C., & Yang, S. M. (2011). Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Cancer Prevention Research (Philadelphia, Pa.), 4(8), 1285–1295.

    Article  CAS  Google Scholar 

  73. Pini, A., Falciani, C., & Bracci, L. (2008). Branched peptides as therapeutics. Current Protein & Peptide Science, 9(5), 468–477.

    Article  CAS  Google Scholar 

  74. Iriemenam, N. C., Khirelsied, A. H., Nasr, A., ElGhazali, G., Giha, H. A., Elhassan A-Elgadir, T. M., Agab-Aldour, A. A., Montgomery, S. M., Anders, R. F., Theisen, M., Troye-Blomberg, M., Elbashir, M. I., & Berzins, K. (2009). Antibody responses to a panel of Plasmodium falciparum malaria blood-stage antigens in relation to clinical disease outcome in Sudan. Vaccine, 27(1), 62–71.

    Article  CAS  PubMed  Google Scholar 

  75. Yang, J. M., Wang, H. J., Du, L., Han, X. M., Ye, Z. Y., Fang, Y., Tao, H. Q., Zhao, Z. S., & Zhou, Y. L. (2009). Screening and identification of novel B cell epitopes in human heparanase and their anti-invasion property for hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 58(9), 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, J., Yang, J., Fan, D., Tao, H., Wang, H., & Yu, T. (2013). Peptide FLNPDVLDI of heparanase is a novel HLA-A2-restricted CTL epitope and elicits potent immunological antitumor effects in vitro with an 8-branched design. Oncology Reports, 29(5), 1955–1961.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, J., Yang, J., Fan, D., Tao, H., Wang, H., & Yu, T. (2013). Peptide FLNPDVLDI of heparanase is a novel HLA-A2-restricted CTL epitope and elicits potent immunological antitumor effects in vitro with an 8-branched design. Oncology Reports, 29(5), 1955–1961.

    Article  CAS  PubMed  Google Scholar 

  78. DeSelm CJ, Tano ZE2, Varghese AM3, Adusumilli PS1,2. CAR T-cell therapy for pancreatic cancer. Journal of Surgical Oncology 2017; 116(1):63–74.

  79. Benmebarek, M. R., Karches, C. H., Cadilha, B. L., Lesch, S., Endres, S., & Kobold, S. (2019). Killing mechanisms of chimeric antigen receptor (CAR) T cells. International Journal of Molecular Sciences, 20(6).

    Google Scholar 

  80. Swann, J. B., & Smyth, M. J. (2007). Immune surveillance of tumors. The Journal of Clinical Investigation, 117(5), 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., Braunschweig, I., Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M., Stiff, P. J., Friedberg, J. W., Flinn, I. W., Goy, A., Hill, B. T., Smith, M. R., Deol, A., Farooq, U., McSweeney, P., Munoz, J., Avivi, I., Castro, J. E., Westin, J. R., Chavez, J. C., Ghobadi, A., Komanduri, K. V., Levy, R., Jacobsen, E. D., Witzig, T. E., Reagan, P., Bot, A., Rossi, J., Navale, L., Jiang, Y., Aycock, J., Elias, M., Chang, D., Wiezorek, J., & Go, W. Y. (2017). Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. The New England Journal of Medicine, 377(26), 2531–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zinzani, P. L., Ribrag, V., Moskowitz, C. H., Michot, J. M., Kuruvilla, J., Balakumaran, A., Zhang, Y., Chlosta, S., Shipp, M. A., & Armand, P. (2017). Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood, 130(3), 267–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Rheingold, S. R., Shen, A., Teachey, D. T., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 371(16), 1507–1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine, 365(8), 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holzinger, A., Barden, M., & Abken, H. (2016). The growing world of CAR T cell trials: A systematic review. Cancer Immunology, Immunotherapy, 65(12), 1433–1450.

    Article  CAS  PubMed  Google Scholar 

  86. Maus, M. V., Haas, A. R., Beatty, G. L., Albelda, S. M., Levine, B. L., Liu, X., Zhao, Y., Kalos, M., & June, C. H. (2013). T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research, 1(1), 26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research 2006; 12(20 Pt 1):6106–6115.

    Google Scholar 

  88. Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 18(4), 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., West, A. N., Carmona, M., Kivork, C., Seja, E., Cherry, G., Gutierrez, A. J., Grogan, T. R., Mateus, C., Tomasic, G., Glaspy, J. A., Emerson, R. O., Robins, H., Pierce, R. H., Elashoff, D. A., Robert, C., & Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Caruana, I., Savoldo, B., Hoyos, V., Weber, G., Liu, H., Kim, E. S., Ittmann, M. M., Marchetti, D., & Dotti, G. (2015). Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nature Medicine, 21(5), 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barash, U., Cohen-Kaplan, V., Dowek, I., Sanderson, R. D., Ilan, N., & Vlodavsky, I. (2010). Proteoglycans in health and disease: New concepts for heparanase function in tumor progression and metastasis. The FEBS Journal, 277(19), 3890–3903.

    Article  CAS  PubMed  Google Scholar 

  92. Fux, L., Ilan, N., Sanderson, R. D., & Vlodavsky, I. (2009). Heparanase: Busy at the cell surface. Trends in Biochemical Sciences, 34(10), 511–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Seminars in Cancer Biology, 20(3), 153–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288(14), 10093–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. David, G., & P, Z. (2015). Heparanase tailors syndecan for exosome production. Molecular & Cellular Oncology, 3(3), e1047556.

    Article  CAS  Google Scholar 

  96. David, G., & P, Z. (2015). Heparanase tailors syndecan for exosome production. Molecular & Cellular Oncology, 3(3), e1047556.

    Article  CAS  Google Scholar 

  97. Shteingauz, A., Boyango, I., Naroditsky, I., Hammond, E., Gruber, M., Doweck, I., Ilan, N., & Vlodavsky, I. (2015). Heparanase enhances tumor growth and Chemoresistance by promoting autophagy. Cancer Research, 75(18), 3946–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ilan, N., Shteingauz, A., & Vlodavsky, I. (2015). Function from within: Autophagy induction by HPSE/heparanase--new possibilities for intervention. Autophagy, 11(12), 2387–2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, L., Fuster, M., Sriramarao, P., & Esko, J. D. (2005). Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunology, 6(9), 902–910.

    Article  CAS  PubMed  Google Scholar 

  100. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., & Ilan, N. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 29, 54–75.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ramani, V. C., Vlodavsky, I., Ng, M., Zhang, Y., Barbieri, P., Noseda, A., & Sanderson, R. D. (2016). Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biology, 55, 22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, B., Yang, S. (2020). Involvement of Heparanase in Gastric Cancer Progression and Immunotherapy. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_13

Download citation

Publish with us

Policies and ethics