Skip to main content

Improving Resource Allocation in MOEA/D with Decision-Space Diversity Metrics

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11934))

Included in the following conference series:

Abstract

One of the main algorithms for solving Multi-Objective Optimization Problems is the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). It is characterized by decomposing the multiple objectives into a large number of single-objective subproblems, and then solving these subproblems in parallel. Usually, these subproblems are considered equivalent, but there are works that indicate that some subproblems can be more difficult than others, and that spending more computational resources in these subproblems can improve the performance of MOEA/D. One open question about this strategy of “Resource Allocation” is: what should be the criteria for allocating more computational effort on one problem or another? In this work we investigate this question. We study four different ways to prioritize subproblems: Randomly, Relative Improvement, Diversity in Decision Space (proposed in this work), and inverted Diversity in Decision Space (also proposed in this work). We compare the performance of MOEA/D using these four different “priority functions” on the DTLZ and UF benchmarks. We evaluate the resulting IGD, proportion of non-dominated solutions, and visually analyse the resulting resource allocation and Pareto Front. The result of our experiments is that the priority function using diversity in decision space improved the MOEA/D, achieving better IGD values and higher proportion of non-dominated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    or maximization

  2. 2.

    https://github.com/yclavinas/MOEADr/tree/tpnc_2019.

References

  1. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Comparing decomposition-based and automatically component-wise designed multi-objective evolutionary algorithms. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 396–410. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_27

    Chapter  Google Scholar 

  2. Cai, X., Li, Y., Fan, Z., Zhang, Q.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)

    Article  Google Scholar 

  3. Campelo, F., Aranha, C.: MOEADr: Component-wise MOEA/D implementation, R package version 1.2.0 (2018). https://cran.R-project.org/package=MOEADr

  4. Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology. North Holland, New York (1983)

    MATH  Google Scholar 

  5. Chiang, T.C., Lai, Y.P.: MOEA/D-AMS: improving MOEA/D by an adaptive mating selection mechanism. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1473–1480. IEEE (2011)

    Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  7. Kang, Q., Song, X., Zhou, M., Li, L.: A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Syst. Man Cybern. Syst. (2018)

    Google Scholar 

  8. Kohira, T., Kemmotsu, H., Akira, O., Tatsukawa, T.: Proposal of benchmark problem based on real-world car structure design optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 183–184. ACM (2018)

    Google Scholar 

  9. Lavinas, Y., Aranha, C., Sakurai, T.: Using diversity as a priority function for resource allocation on MOEA/D. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM (2019)

    Google Scholar 

  10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  11. Nasir, M., Mondal, A.K., Sengupta, S., Das, S., Abraham, A.: An improved multiobjective evolutionary algorithm based on decomposition with fuzzy dominance. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 765–772. IEEE (2011)

    Google Scholar 

  12. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017)

    Google Scholar 

  13. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  14. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 203–208. IEEE (2009)

    Google Scholar 

  15. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report 264 (2008)

    Google Scholar 

  16. Zhou, A., Zhang, Q.: Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(1), 52–64 (2016)

    Article  Google Scholar 

  17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Lavinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lavinas, Y., Aranha, C., Ladeira, M. (2019). Improving Resource Allocation in MOEA/D with Decision-Space Diversity Metrics. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2019. Lecture Notes in Computer Science(), vol 11934. Springer, Cham. https://doi.org/10.1007/978-3-030-34500-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34500-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34499-3

  • Online ISBN: 978-3-030-34500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics