Skip to main content

Peptide-functionalized Biomaterials with Osteoinductive or Anti-biofilm Activity

  • Chapter
  • First Online:
Racing for the Surface
  • 1430 Accesses

Abstract

Peptides are short sequences of amino acids. Peptides with biological functionality can be derived from the active domain of proteins or determined from peptide screening experiments. Combined with modern chemical techniques to facilitate peptide synthesis, this leads to peptide modification as an interesting approach to render synthetic biomaterials bioactive. Peptides have been used to functionalize implant surfaces as well as bulk biomaterials, and they can be incorporated within controlled release systems. This chapter considers both osteoinductive peptides and anti-biofilm peptides with the goals to improve bone regeneration and reduce implant-associated infection, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680. https://doi.org/10.1126/science.8259512

    Article  CAS  PubMed  Google Scholar 

  2. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96:11211–11216. https://doi.org/10.1073/pnas.96.20.11211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393. https://doi.org/10.1016/0142-9612(95)96874-Y

    Article  PubMed  Google Scholar 

  4. Collier JH, Messersmith PB (2004) Self-assembling polymer–peptide conjugates: nanostructural tailoring. Adv Mater 16:907–910. https://doi.org/10.1002/adma.200306379

    Article  CAS  Google Scholar 

  5. Hauser CAE et al (2011) Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci U S A 108:1361. https://doi.org/10.1073/pnas.1014796108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715. https://doi.org/10.1146/annurev.cellbio.12.1.697

    Article  CAS  PubMed  Google Scholar 

  7. DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659. https://doi.org/10.1038/nmat2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andukuri A, Minor WP, Kushwaha M, Anderson JM, Jun H-W (2010) Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells. Nanomedicine 6:289–297. https://doi.org/10.1016/j.nano.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Dalet-Fumeron V, Boudjennah L, Pagano M (1998) Binding of the cysteine proteinases papain and cathepsin B-like to coated laminin: use of synthetic peptides from laminin and from the laminin binding region of the β1Integrin subunit to characterize the binding site. Arch Biochem Biophys 358:283–290. https://doi.org/10.1006/abbi.1998.0868

    Article  CAS  PubMed  Google Scholar 

  10. Massia SP, Hubbell JA (1991) Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res 25:223–242

    Article  CAS  PubMed  Google Scholar 

  11. Gobin AS, West JL (2003) Val-Ala-Pro-Gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mater Res A 67A:255–259. https://doi.org/10.1002/jbm.a.10110

    Article  CAS  Google Scholar 

  12. Chen S et al (2015b) A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. J Mater Chem B 3:6798–6804. https://doi.org/10.1039/C5TB00842E

    Article  CAS  PubMed  Google Scholar 

  13. Davel LE, Puricelli LI, Del Carmen M, Vidal C, De Lorenzo MS, Sacerdote de Lustig E, Bal de Kier Joffe ED (1999) Soluble factors from the target organ enhance tumor cell angiogenesis: role of laminin SIKVAV sequence. Oncol Rep 6:907–918

    CAS  PubMed  Google Scholar 

  14. Maeda T, Oyama R, Titani K, Sekiguchi K (1993) Engineering of artificial cell-adhesive proteins by grafting EILDVPST sequence derived from fibronectin the. J Biochem 113:29–35

    Article  CAS  PubMed  Google Scholar 

  15. Moyano JV et al (1997) Fibronectin type III5 repeat contains a novel cell adhesion sequence, KLDAPT, which binds activated α4β1 and α4β7 integrins. J Biol Chem 272:24832–24836

    Article  CAS  PubMed  Google Scholar 

  16. Woods A, McCarthy JB, Furcht LT, Couchman JR (1993) A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell 4:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng Y, Mrksich M (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43:15811–15821. https://doi.org/10.1021/bi049174+

    Article  CAS  PubMed  Google Scholar 

  18. Lee ST et al (2010) Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31:1219–1226. https://doi.org/10.1016/j.biomaterials.2009.10.054

    Article  CAS  PubMed  Google Scholar 

  19. Yokosaki Y et al (1998) Identification of the ligand binding site for the integrin α9β1 in the third fibronectin type III repeat of tenascin-C. J Biol Chem 273:11423–11428

    Article  CAS  PubMed  Google Scholar 

  20. Massia SP, Hubbell JA (1992) Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J Biol Chem 267:14019–14026

    CAS  PubMed  Google Scholar 

  21. Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416. https://doi.org/10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  22. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003a) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413. https://doi.org/10.1073/pnas.0737381100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA (2003b) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513. https://doi.org/10.1038/nbt818

    Article  CAS  PubMed  Google Scholar 

  24. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410. https://doi.org/10.1021/cr960065d

    Article  CAS  PubMed  Google Scholar 

  25. Winter GP, James K, Potter G (1989) Antibody engineering. Philos Trans R Soc Lond B Biol Sci 324:537–547. https://doi.org/10.1098/rstb.1989.0066

    Article  CAS  PubMed  Google Scholar 

  26. Desch KC et al (2015) Probing ADAMTS13 substrate specificity using phage display. PLoS One 10:e0122931. https://doi.org/10.1371/journal.pone.0122931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turk BE, Huang LL, Piro ET, Cantley LC (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 19:661–667. https://doi.org/10.1038/90273

    Article  CAS  PubMed  Google Scholar 

  28. Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4:973–982. https://doi.org/10.1016/S0960-9822(00)00221-9

    Article  CAS  PubMed  Google Scholar 

  29. Songyang Z et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    Article  CAS  PubMed  Google Scholar 

  30. Songyang Z et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778. https://doi.org/10.1016/0092-8674(93)90404-E

    Article  CAS  PubMed  Google Scholar 

  31. Yaffe MB et al (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91:961–971. https://doi.org/10.1016/S0092-8674(00)80487-0

    Article  CAS  PubMed  Google Scholar 

  32. Boulware KT, Daugherty PS (2006) Protease specificity determination by using cellular libraries of peptide substrates (CLiPS). Proc Natl Acad Sci U S A 103:7583. https://doi.org/10.1073/pnas.0511108103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW (2002) A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem 277:4485–4491. https://doi.org/10.1074/jbc.M109469200

    Article  CAS  PubMed  Google Scholar 

  34. Smith MM, Shi L, Navre M (1995) Rapid identification of highly active and selective substrates for Stromelysin and Matrilysin using bacteriophage peptide display libraries. J Biol Chem 270:6440–6449

    Article  CAS  PubMed  Google Scholar 

  35. Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF (2003) Identification of peptide substrates for human MMP-11 (Stromelysin-3) using phage display. J Biol Chem 278:27820–27827

    Article  CAS  PubMed  Google Scholar 

  36. Deng S-J et al (2000) Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem 275:31422–31427. https://doi.org/10.1074/jbc.M004538200

    Article  PubMed  Google Scholar 

  37. Shuichi O, Kazutaka M, Yoshikazu S, Ken-ichi M, Konstanty W, Yuji Y (2001) Substrate phage as a tool to identify novel substrate sequences of proteases. Comb Chem High Throughput Screen 4:573–583. https://doi.org/10.2174/1386207013330788

    Article  Google Scholar 

  38. Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31:7836–7845. https://doi.org/10.1016/j.biomaterials.2010.06.061

    Article  CAS  PubMed  Google Scholar 

  39. Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32:1301–1310. https://doi.org/10.1016/j.biomaterials.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  40. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154. https://doi.org/10.1021/ja00897a025

    Article  CAS  Google Scholar 

  41. Mäde V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. https://doi.org/10.3762/bjoc.10.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vanier GS (2013) Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). In: Jensen KJ, Tofteng Shelton P, Pedersen SL (eds) Peptide synthesis and applications. Humana Press, Totowa, pp 235–249. https://doi.org/10.1007/978-1-62703-544-6_17

    Chapter  Google Scholar 

  43. Ramesh S, de la Torre BG, Albericio F, Kruger HG, Govender T (2017) Microwave-assisted synthesis of antimicrobial peptides. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Springer, New York, pp 51–59. https://doi.org/10.1007/978-1-4939-6737-7_4

    Chapter  Google Scholar 

  44. Chen M, Heimer P, Imhof D (2015a) Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 47:1283–1299. https://doi.org/10.1007/s00726-015-1982-5

    Article  CAS  PubMed  Google Scholar 

  45. Clancy KW, Melvin JA, McCafferty DG (2010) Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Pept Sci 94:385–396. https://doi.org/10.1002/bip.21472

    Article  CAS  Google Scholar 

  46. Schmohl L, Schwarzer D (2014) Chemo-enzymatic three-fragment assembly of semisynthetic proteins. J Pept Sci 20:145–151. https://doi.org/10.1002/psc.2600

    Article  CAS  PubMed  Google Scholar 

  47. Chang TK, Jackson DY, Burnier JP, Wells JA (1994) Subtiligase: a tool for semisynthesis of proteins. Proc Natl Acad Sci U S A 91:12544. https://doi.org/10.1073/pnas.91.26.12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan X, Yang R, Liu C-F (2018) Facilitating Subtiligase-catalyzed peptide ligation reactions by using peptide thioester substrates. Org Lett 20:6691–6694. https://doi.org/10.1021/acs.orglett.8b02747

    Article  CAS  PubMed  Google Scholar 

  49. Boda SK et al (2019) Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomater 85:282–293. https://doi.org/10.1016/j.actbio.2018.12.051

    Article  CAS  PubMed  Google Scholar 

  50. Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J (2018) Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv Healthc Mater 7:e1701415. https://doi.org/10.1002/adhm.201701415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leight JL, Alge DL, Maier AJ, Anseth KS (2013) Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials 34:7344–7352. https://doi.org/10.1016/j.biomaterials.2013.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13:2214–2224

    Article  CAS  PubMed  Google Scholar 

  53. Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10:75–81. https://doi.org/10.1021/bc9800769

    Article  CAS  PubMed  Google Scholar 

  54. Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007. https://doi.org/10.1021/bm070228f

    Article  CAS  PubMed  Google Scholar 

  55. Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20:333–339. https://doi.org/10.1021/bc800441v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maia FR, Barbosa M, Gomes DB, Vale N, Gomes P, Granja PL, Barrias CC (2014) Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release 189:158–168. https://doi.org/10.1016/j.jconrel.2014.06.030

    Article  CAS  PubMed  Google Scholar 

  57. Phelps EA et al (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70. https://doi.org/10.1002/adma.201103574

    Article  CAS  PubMed  Google Scholar 

  58. Gentile P, Ferreira AM, Callaghan JT, Miller CA, Atkinson J, Freeman C, Hatton PV (2017) Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Adv Healthc Mater 6:1601182. https://doi.org/10.1002/adhm.201601182

    Article  CAS  Google Scholar 

  59. Cao F-Y, Yin W-N, Fan J-X, Zhuo R-X, Zhang X-Z (2015) A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater Sci 3:345–351. https://doi.org/10.1039/C4BM00300D

    Article  CAS  PubMed  Google Scholar 

  60. Hou R et al (2018) Novel osteogenic growth peptide C-terminal pentapeptide grafted poly(d,l-lactic acid) improves the proliferation and differentiation of osteoblasts: the potential bone regenerative biomaterial. Int J Biol Macromol 119:874–881. https://doi.org/10.1016/j.ijbiomac.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  61. Li S, Xu Y, Yu J, Becker ML (2017) Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 141:176–187. https://doi.org/10.1016/j.biomaterials.2017.06.038

    Article  CAS  PubMed  Google Scholar 

  62. Soultan AH, Verheyen T, Smet M, De Borggraeve WM, Patterson J (2018) Synthesis and peptide functionalization of hyperbranched poly(arylene oxindole) towards versatile biomaterials. Polym Chem 9:2775–2784. https://doi.org/10.1039/C8PY00139A

    Article  CAS  Google Scholar 

  63. Bain JL, Bonvallet PP, Abou-Arraj RV, Schupbach P, Reddy MS, Bellis SL (2015) Enhancement of the regenerative potential of anorganic bovine bone graft utilizing a polyglutamate-modified BMP2 peptide with improved binding to calcium-containing materials. Tissue Eng Part A 21:2426–2436. https://doi.org/10.1089/ten.tea.2015.0160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao Q, He Z, Sun WQ, Fan G, Zhao J, Bao N, Ye T (2019) Improvement of calcium phosphate scaffold osteogenesis in vitro via combination of glutamate-modified BMP-2 peptides. Mater Sci Eng C Mater Biol Appl 96:412–418. https://doi.org/10.1016/j.msec.2018.11.048

    Article  CAS  PubMed  Google Scholar 

  65. Culpepper BK, Webb WM, Bonvallet PP, Bellis SL (2014) Tunable delivery of bioactive peptides from hydroxyapatite biomaterials and allograft bone using variable-length polyglutamate domains. J Biomed Mater Res A 120A:1008–1016. https://doi.org/10.1002/jbm.a.34766

    Article  CAS  Google Scholar 

  66. Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL (2005) The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials 26:7046–7056. https://doi.org/10.1016/j.biomaterials.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  67. Gilbert M, Giachelli CM, Stayton PS (2003) Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A 67A:69–77. https://doi.org/10.1002/jbm.a.10053

    Article  CAS  Google Scholar 

  68. Gao X et al (2015) Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomedicine 10:7109–7128

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ko E, Yang K, Shin J, Cho S-W (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14:3202–3213. https://doi.org/10.1021/bm4008343

    Article  CAS  PubMed  Google Scholar 

  70. Pan G et al (2016) Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials. J Am Chem Soc 138:15078–15086. https://doi.org/10.1021/jacs.6b09770

    Article  CAS  PubMed  Google Scholar 

  71. Pan H, Zheng Q, Yang S, Guo X (2014) Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro. J Biomed Mater Res A 102:4526–4535. https://doi.org/10.1002/jbm.a.35129

    Article  CAS  PubMed  Google Scholar 

  72. Wang M et al (2015) In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Appl Mater Interfaces 7:4560–4572. https://doi.org/10.1021/acsami.5b00188

    Article  CAS  PubMed  Google Scholar 

  73. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426. https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  75. Tejero R, Anitua E, Orive G (2014) Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci 39:1406–1447. https://doi.org/10.1016/j.progpolymsci.2014.01.001

    Article  CAS  Google Scholar 

  76. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920. https://doi.org/10.1126/science.8493529

    Article  CAS  PubMed  Google Scholar 

  77. Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. In: Bertassoni LE, Coelho PG (eds) Engineering mineralized and load bearing tissues. Springer, Cham, pp 95–110. https://doi.org/10.1007/978-3-319-22345-2_6

    Chapter  Google Scholar 

  78. Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J (2016) Peptides for bone tissue engineering. J Control Release 244:122–135. https://doi.org/10.1016/j.jconrel.2016.10.024

    Article  CAS  PubMed  Google Scholar 

  79. Bab I et al (1992) Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J 11:1867–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gabarin N et al (2001) Mitogenic Gi protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10–14)] and attenuation of activation by cAMP. J Cell Biochem 81:594–603. https://doi.org/10.1002/jcb.1083

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50:405–409. https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<405::AID-JBM15>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  82. Saito A, Suzuki Y, Ogata S-i, Ohtsuki C, Tanihara M (2003) Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 1651:60–67. https://doi.org/10.1016/S1570-9639(03)00235-8

    Article  CAS  PubMed  Google Scholar 

  83. Seol Y-J et al (2006) Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 77A:599–607. https://doi.org/10.1002/jbm.a.30639

    Article  CAS  Google Scholar 

  84. Zouani OF, Chollet C, Guillotin B, Durrieu M-C (2010) Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31:8245–8253. https://doi.org/10.1016/j.biomaterials.2010.07.042

    Article  CAS  PubMed  Google Scholar 

  85. Kim HK et al (2012) Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials 33:7057–7063. https://doi.org/10.1016/j.biomaterials.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  86. Lee JS, Kim ME, Seon JK, Kang JY, Yoon TR, Park Y-D, Kim HK (2018) Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways. Stem Cell Res 26:28–35. https://doi.org/10.1016/j.scr.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  87. Choi YJ et al (2010) The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 31:7226–7238. https://doi.org/10.1016/j.biomaterials.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  88. Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G, Faucheux N (2011) The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 18:342–352. https://doi.org/10.1089/ten.tea.2011.0008

    Article  CAS  PubMed  Google Scholar 

  89. Bergeron E, Senta H, Mailloux A, Park H, Lord E, Faucheux N (2009) Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic Proteins-9. Tissue Eng Part A 15:3341–3349. https://doi.org/10.1089/ten.tea.2009.0189

    Article  CAS  PubMed  Google Scholar 

  90. Jung RE, Cochran DL, Domken O, Seibl R, Jones AA, Buser D, Hammerle CHF (2007) The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res 18:319–325. https://doi.org/10.1111/j.1600-0501.2007.01342.x

    Article  PubMed  Google Scholar 

  91. Park J-B et al (2007) Osteopromotion with synthetic oligopeptide–coated bovine bone mineral in vivo. J Periodontol 78:157–163. https://doi.org/10.1902/jop.2007.060200

    Article  CAS  PubMed  Google Scholar 

  92. Lee J-Y et al (2007b) Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28:4257–4267. https://doi.org/10.1016/j.biomaterials.2007.05.040

    Article  CAS  PubMed  Google Scholar 

  93. Gabet Y et al (2004) Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone 35:65–73. https://doi.org/10.1016/j.bone.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  94. Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM (2016) Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review. Int J Mol Sci 17:1885. https://doi.org/10.3390/ijms17111885

    Article  CAS  PubMed Central  Google Scholar 

  95. Policastro GM, Becker ML (2016) Osteogenic growth peptide and its use as a bio-conjugate in regenerative medicine applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:449–464. https://doi.org/10.1002/wnan.1376

    Article  CAS  PubMed  Google Scholar 

  96. Moore NM, Lin NJ, Gallant ND, Becker ML (2010) The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials 31:1604–1611. https://doi.org/10.1016/j.biomaterials.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  97. Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2:e190. https://doi.org/10.1371/journal.pone.0000190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1:267–280. https://doi.org/10.1016/0955-2235(89)90015-X

    Article  CAS  PubMed  Google Scholar 

  99. Saito A, Suzuki Y, Ogata S-I, Ohtsuki C, Tanihara M (2004) Prolonged ectopic calcification induced by BMP-2–derived synthetic peptide. J Biomed Mater Res A 70A:115–121. https://doi.org/10.1002/jbm.a.30071

    Article  CAS  Google Scholar 

  100. Saito A, Suzuki Y, Ogata S-I, Ohtsuki C, Tanihara M (2005) Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A 72A:77–82. https://doi.org/10.1002/jbm.a.30208

    Article  CAS  Google Scholar 

  101. Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release 134:111–117. https://doi.org/10.1016/j.jconrel.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  102. Moore NM, Lin NJ, Gallant ND, Becker ML (2011) Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7:2091–2100. https://doi.org/10.1016/j.actbio.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  103. Bergeron E, Marquis ME, Chrétien I, Faucheux N (2007) Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J Mater Sci Mater Med 18:255–263. https://doi.org/10.1007/s10856-006-0687-4

    Article  CAS  PubMed  Google Scholar 

  104. Beauvais S, Drevelle O, Lauzon M-A, Daviau A, Faucheux N (2016) Modulation of MAPK signalling by immobilized adhesive peptides: effect on stem cell response to BMP-9-derived peptides. Acta Biomater 31:241–251. https://doi.org/10.1016/j.actbio.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  105. Neer RM et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441. https://doi.org/10.1056/NEJM200105103441904

    Article  CAS  PubMed  Google Scholar 

  106. Arrighi I, Mark S, Alvisi M, von Rechenberg B, Hubbell JA, Schense JC (2009) Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials 30:1763–1771. https://doi.org/10.1016/j.biomaterials.2008.12.023

    Article  CAS  PubMed  Google Scholar 

  107. Takahata M, Schwarz EM, Chen T, O’Keefe RJ, Awad HA (2012) Delayed short-course treatment with teriparatide (PTH1–34) improves femoral allograft healing by enhancing intramembranous bone formation at the graft–host junction. J Bone Miner Res 27:26–37. https://doi.org/10.1002/jbmr.518

    Article  CAS  PubMed  Google Scholar 

  108. Chandra A et al (2014) PTH1–34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40. https://doi.org/10.1016/j.bone.2014.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dent-Acosta RE, Storm N, Steiner RS, San Martin J (2012) The tactics of modern-day regulatory trials. JBJS 94:39–44. https://doi.org/10.2106/jbjs.l.00194

    Article  Google Scholar 

  110. Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV (2016) The role of peptides in bone healing and regeneration: a systematic review. BMC Med 14:103. https://doi.org/10.1186/s12916-016-0646-y

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ryaby JT, Sheller MR, Levine BP, Bramlet DG, Ladd AL, Carney DH (2006) Thrombin peptide TP508 stimulates cellular events leading to angiogenesis, revascularization, and repair of dermal and musculoskeletal tissues. JBJS 88:132–139. https://doi.org/10.2106/jbjs.f.00892

    Article  Google Scholar 

  112. Aspenberg P et al (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414. https://doi.org/10.1359/jbmr.090731

    Article  CAS  PubMed  Google Scholar 

  113. Aspenberg P, Johansson T (2010) Teriparatide improves early callus formation in distal radial fractures. Acta Orthop 81:234–236. https://doi.org/10.3109/17453671003761946

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chintamaneni S, Finzel K, Gruber BL (2010) Successful treatment of sternal fracture nonunion with teriparatide. Osteoporos Int 21:1059–1063. https://doi.org/10.1007/s00198-009-1061-4

    Article  CAS  PubMed  Google Scholar 

  115. Yu C-T, Chang C-C, Chen C-L, Wei JC-C, Wu J-K (2008) Early callus formation in human hip fracture treated with internal fixation and teriparatide. J Rheumatol 35:2082–2083

    PubMed  Google Scholar 

  116. Arnold PM et al (2016) Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded Food and Drug Administration investigational device exemption study. Spine 41:1075–1083. https://doi.org/10.1097/brs.0000000000001466

    Article  PubMed  Google Scholar 

  117. Gomar F, Orozco R, Villar JL, Arrizabalaga F (2007) P-15 small peptide bone graft substitute in the treatment of non-unions and delayed union. A pilot clinical trial. Int Orthop 31:93–99. https://doi.org/10.1007/s00264-006-0087-x

    Article  PubMed  Google Scholar 

  118. Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M (2000) Multi-center clinical comparison of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J Periodontol 71:1671–1679. https://doi.org/10.1902/jop.2000.71.11.1671

    Article  CAS  PubMed  Google Scholar 

  119. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  120. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429. https://doi.org/10.1056/NEJMra035415

    Article  CAS  PubMed  Google Scholar 

  121. Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. https://doi.org/10.1016/S0966-842X(01)02012-1

    Article  CAS  PubMed  Google Scholar 

  122. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114. https://doi.org/10.1038/nrd1008

    Article  CAS  PubMed  Google Scholar 

  123. Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173. https://doi.org/10.1111/j.1574-6968.2004.tb09643.x

    Article  CAS  PubMed  Google Scholar 

  124. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  125. Karygianni L, Al-Ahmad A, Argyropoulou A, Hellwig E, Anderson AC, Skaltsounis AL (2016) Natural antimicrobials and oral microorganisms: a systematic review on herbal interventions for the eradication of multispecies oral biofilms. Front Microbiol 6:1529. https://doi.org/10.3389/fmicb.2015.01529

    Article  PubMed  PubMed Central  Google Scholar 

  126. Andrea A, Molchanova N, Jenssen H (2018) Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomol Ther 8:27. https://doi.org/10.3390/biom8020027

    Article  CAS  Google Scholar 

  127. Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta 1858:1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  128. de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E, Franco OL, Hancock REW (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta 1858:1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  129. Dostert M, Belanger CR, Hancock REW (2018) Design and assessment of anti-biofilm peptides: steps toward clinical application. J Innate Immun 11:193. https://doi.org/10.1159/000491497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pletzer D, Coleman SR, Hancock REW (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40. https://doi.org/10.1016/j.mib.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pletzer D, Hancock REW (2016) Antibiofilm peptides: potential as broad-Spectrum agents. J Bacteriol 198:2572. https://doi.org/10.1128/JB.00017-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Strempel N, Strehmel J, Overhage J (2015) Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr Pharm Des 21:67–84. https://doi.org/10.2174/1381612820666140905124312

    Article  CAS  PubMed  Google Scholar 

  133. Haney EF, Brito-Sánchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock REW (2018) Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci Rep 8:1871. https://doi.org/10.1038/s41598-018-19669-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. De Brucker K et al (2014) Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother 58:5395. https://doi.org/10.1128/AAC.03045-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V (2015) Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 58:625–639. https://doi.org/10.1021/jm501084q

    Article  CAS  PubMed  Google Scholar 

  136. Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-shar’i N, Al-Balas Q, Abu-Awad A (2015) The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-melittin, a rationally designed hybrid peptide. Int J Pept Res Ther 21:165–177. https://doi.org/10.1007/s10989-014-9444-6

    Article  CAS  Google Scholar 

  137. Orlando F et al (2008) BMAP-28 improves the efficacy of vancomycin in rat models of gram-positive cocci ureteral stent infection. Peptides 29:1118–1123. https://doi.org/10.1016/j.peptides.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  138. Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366. https://doi.org/10.1128/AAC.01180-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bionda N et al (2016) Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem 108:354–363. https://doi.org/10.1016/j.ejmech.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  140. de la Fuente-Núñez C et al (2015) d-Enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:1280–1282. https://doi.org/10.1016/j.chembiol.2015.09.004

    Article  CAS  Google Scholar 

  141. Pletzer D, Wolfmeier H, Bains M, Hancock REW (2017) Synthetic peptides to target stringent response-controlled virulence in a Pseudomonas aeruginosa murine cutaneous infection model. Front Microbiol 8:1867–1867. https://doi.org/10.3389/fmicb.2017.01867

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7:6953. https://doi.org/10.1038/s41598-017-07440-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brancatisano FL et al (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446. https://doi.org/10.1080/08927014.2014.888062

    Article  CAS  PubMed  Google Scholar 

  144. Mansour SC, de la Fuente-Núñez C, Hancock REW (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21:323–329. https://doi.org/10.1002/psc.2708

    Article  CAS  PubMed  Google Scholar 

  145. Anunthawan T, de la Fuente-Núñez C, Hancock REW, Klaynongsruang S (2015) Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta 1848:1352–1358. https://doi.org/10.1016/j.bbamem.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  146. Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182. https://doi.org/10.1128/IAI.00318-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haisma EM et al (2014) LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother 58:4411. https://doi.org/10.1128/AAC.02554-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Breij A et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044. https://doi.org/10.1126/scitranslmed.aan4044

    Article  CAS  PubMed  Google Scholar 

  149. Minardi D et al (2007) The antimicrobial peptide Tachyplesin III coated alone and in combination with intraperitoneal piperacillin-tazobactam prevents ureteral stent Pseudomonas infection in a rat subcutaneous pouch model. Peptides 28:2293–2298. https://doi.org/10.1016/j.peptides.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  150. Almaaytah A, Qaoud MT, Khalil Mohammed G, Abualhaijaa A, Knappe D, Hoffmann R, Al-Balas Q (2018) Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals (Basel, Switzerland) 11(1). https://doi.org/10.3390/ph11010003

    Article  PubMed Central  Google Scholar 

  151. Ma Z et al (2017) Membrane-active amphipathic peptide WRL3 with in vitro antibiofilm capability and in vivo efficacy in treating methicillin-resistant Staphylococcus aureus burn wound infections. ACS Infect Dis 3:820–832. https://doi.org/10.1021/acsinfecdis.7b00100

    Article  CAS  PubMed  Google Scholar 

  152. Haney EF, Mansour SC, Hancock REW (2017) Antimicrobial peptides: an introduction. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Springer, New York, pp 3–22. https://doi.org/10.1007/978-1-4939-6737-7_1

    Chapter  Google Scholar 

  153. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. https://doi.org/10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  154. Haney EF, Straus SK, Hancock REW (2019) Reassessing the host defense peptide landscape. Front Chem 7:43. https://doi.org/10.3389/fchem.2019.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23:1008. https://doi.org/10.1038/nbt1113

    Article  CAS  PubMed  Google Scholar 

  156. Butts A, Krysan DJ (2012) Antifungal drug discovery: something old and something new. PLoS Pathog 8:e1002870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823:1434–1443. https://doi.org/10.1016/j.bbamcr.2012.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A, Campa M, Batoni G (2010) Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides 31:1995–2002. https://doi.org/10.1016/j.peptides.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  159. Tavanti A, Maisetta G, Del Gaudio G, Petruzzelli R, Sanguinetti M, Batoni G, Senesi S (2011) Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates. Peptides 32:2484–2487. https://doi.org/10.1016/j.peptides.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  160. Wieczorek M et al (2010) Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol 17:970–980. https://doi.org/10.1016/j.chembiol.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  161. de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152. https://doi.org/10.1371/journal.ppat.1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2002) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol 46:741–749. https://doi.org/10.1111/j.1348-0421.2002.tb02759.x

    Article  CAS  PubMed  Google Scholar 

  163. Chung EMC, Dean SN, Propst CN, Bishop BM, van Hoek ML (2017) Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound NPJ biofilms and microbiomes. NPJ Biofilms Microbiomes 3:9. https://doi.org/10.1038/s41522-017-0017-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29:67–74. https://doi.org/10.1016/j.biotechadv.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  165. Forbes S, McBain AJ, Felton-Smith S, Jowitt TA, Birchenough HL, Dobson CB (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34:5453–5464. https://doi.org/10.1016/j.biomaterials.2013.03.087

    Article  CAS  PubMed  Google Scholar 

  166. Etienne O et al (2004) Multilayer polyelectrolyte films functionalized by insertion of Defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48:3662. https://doi.org/10.1128/AAC.48.10.3662-3669.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357. https://doi.org/10.1016/j.biomaterials.2009.11.082

    Article  CAS  PubMed  Google Scholar 

  168. Gao G, Cheng John TJ, Kindrachuk J, Hancock Robert EW, Straus Suzana K, Kizhakkedathu Jayachandran N (2012) Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide. Chem Biol 19:199–209. https://doi.org/10.1016/j.chembiol.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  169. Gao G et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909. https://doi.org/10.1016/j.biomaterials.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  170. Lim K et al (2013) Immobilization studies of an engineered arginine–tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5:6412–6422. https://doi.org/10.1021/am401629p

    Article  CAS  PubMed  Google Scholar 

  171. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526. https://doi.org/10.1016/j.biomaterials.2010.08.035

    Article  CAS  PubMed  Google Scholar 

  172. Kazemzadeh-Narbat M, Noordin S, Masri BA, Garbuz DS, Duncan CP, Hancock REW, Wang R (2012) Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater 100B:1344–1352. https://doi.org/10.1002/jbm.b.32701

    Article  CAS  Google Scholar 

  173. Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Hancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977. https://doi.org/10.1016/j.biomaterials.2013.04.036

    Article  CAS  PubMed  Google Scholar 

  174. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379. https://doi.org/10.1038/nbt.2572

    Article  CAS  PubMed  Google Scholar 

  175. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194–194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22:613–621. https://doi.org/10.1111/wrr.12211

    Article  PubMed  Google Scholar 

  177. Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. https://doi.org/10.1086/429323

    Article  CAS  PubMed  Google Scholar 

  178. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449. https://doi.org/10.1128/CMR.00006-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215. https://doi.org/10.1093/jac/dkm357

    Article  CAS  PubMed  Google Scholar 

  180. Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592. https://doi.org/10.1016/j.bbamem.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  181. Piluso S, Soultan AH, Patterson J (2017) Molecularly engineered polymer-based Systems in drug delivery and regenerative medicine. Curr Pharm Des 23:281–294. https://doi.org/10.2174/1381612822666161021104239

    Article  CAS  PubMed  Google Scholar 

  182. Moreira Teixeira LS, Patterson J, Luyten FP (2014) Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 38:1861–1876. https://doi.org/10.1007/s00264-014-2402-2

    Article  PubMed  Google Scholar 

  183. Van den Broeck L, Piluso S, Soultan AH, De Volder M, Patterson J (2019) Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Mater Sci Eng C Mater Biol Appl 98:1133–1144. https://doi.org/10.1016/j.msec.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  184. Romanò CL, Toscano M, Romanò D, Drago L (2013) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25:67–80. https://doi.org/10.1179/1973947812Y.0000000045

    Article  CAS  PubMed  Google Scholar 

  185. Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G (2016) Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci 17:334–334. https://doi.org/10.3390/ijms17030334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work in the research group of the author has been partially supported by the Research Foundation Flanders (FWO), grant number G.0B39.14, and the special research fund of the KU Leuven, grant numbers CREA/13/017 and IDO/13/016. The author also gratefully acknowledges the interesting discussions about peptide-functionalized biomaterials and protein engineering over the years with the members of her research group, particularly Dr. Al Halifa Soultan, Dr. Susanna Piluso, Dr. Abhijith Kudva, Burak Toprakhisar, and Christian Garcia Abrego, as well as her former mentors Prof. Jeffrey Hubbell, Prof. Patrick Stayton, and Prof. Michael Hecht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patterson, J. (2020). Peptide-functionalized Biomaterials with Osteoinductive or Anti-biofilm Activity. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_6

Download citation

Publish with us

Policies and ethics