Skip to main content

Bimetallic Nanoparticles for Biomedical Applications: A Review

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Bimetallic nanoparticles, or BMNPs, are nanosized structures that are of growing interest in biomedical applications. Although their production shares aspects with physicochemical approaches for the synthesis of their monometallic counterparts, they can show a large variety of new properties and applications as a consequence of the synergetic effect between the two components. These applications can be as diverse as antibacterial treatments or anticancer or biological imaging approaches, as well as drug delivery. Nevertheless, utilization of BMNPs in such fields has received limited attention because of the severe lack of knowledge and concerns regarding the use of other nanomaterials, such as stability and biodegradability over time, tendency to form clusters, chemical reactivity, and biocompatibility. In this review, a close look at bimetallic systems is presented, focusing on their biomedical applications as antibacterial, anticancer, drug delivery, and imaging agents, showing significant enhancement of their features compared to their monometallic counterparts and other current used nanomaterials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olsman N, Goentoro L (2018) There’s (still) plenty of room at the bottom. Curr Opin Biotechnol 54:72–79. https://doi.org/10.1016/j.copbio.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi N (1974) On the basic concept of nano-technology. In: Proc. intl. conf. prod. London. https://ci.nii.ac.jp/naid/20000654683

  3. Pearce JM (2012) Make nanotechnology research open-source. Nature 491(7425):519–521. https://doi.org/10.1038/491519a

    Article  CAS  PubMed  Google Scholar 

  4. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3. https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  5. Seeman NC (2003) Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42(24):7259–7269. https://doi.org/10.1021/bi030079v

    Article  CAS  PubMed  Google Scholar 

  6. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  PubMed  Google Scholar 

  7. Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods by Nello Christianini and John Shawe-Taylor, Cambridge University Press, Cambridge, 2000, Xiii+189 pp., ISBN 0-521-78019-5. Robotica 18(6):687–689. https://doi.org/10.1017/S0263574700232827

    Article  Google Scholar 

  8. Webster TJ, Seil I (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767. https://doi.org/10.2147/IJN.S24805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamal MA, Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA (2012) Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 7:4391. https://doi.org/10.2147/IJN.S33838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230. https://doi.org/10.1021/nl102184c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging. Arterioscler Thromb Vasc Biol 29(7):992–1000. https://doi.org/10.1161/ATVBAHA.108.165506

    Article  CAS  PubMed  Google Scholar 

  12. Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1(1):3–17. https://doi.org/10.1166/jbn.2005.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi S, Chen F, Cai W (2013) Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8(12):2027–2039. https://doi.org/10.2217/nnm.13.177

    Article  CAS  PubMed  Google Scholar 

  14. Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P (2017) Biomedical applications of nanotechnology. Biophys Rev 9(2):79–89. https://doi.org/10.1007/s12551-016-0246-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289. https://doi.org/10.4103/0975-7406.72127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raliya R, Singh Chadha T, Haddad K, Biswas P (2016) Perspective on nanoparticle technology for biomedical use. Curr Pharm Des 22(17):2481–2490. http://www.ncbi.nlm.nih.gov/pubmed/26951098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vernon RE (2013) Which elements are metalloids? J Chem Educ 90(12):1703–1707. https://doi.org/10.1021/ed3008457

    Article  CAS  Google Scholar 

  18. Dutz S, Müller R, Eberbeck D, Hilger I, Zeisberger M (2015) Magnetic nanoparticles adapted for specific biomedical applications. Biomed Tech (Berl) 60(5):405–416. https://doi.org/10.1515/bmt-2015-0044

    Article  CAS  Google Scholar 

  19. Kralj S, Makovec D, Čampelj S, Drofenik M (2010) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322(13):1847–1853. https://doi.org/10.1016/J.JMMM.2009.12.038

    Article  CAS  Google Scholar 

  20. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7(5):1700845. https://doi.org/10.1002/adhm.201700845

    Article  CAS  Google Scholar 

  21. Tokajuk G, Niemirowicz K, Deptuła P, Piktel E, Cieśluk M, Wilczewska A, Dąbrowski J, Bucki R (2017) Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int J Nanomedicine 12:7833–7846. https://doi.org/10.2147/IJN.S140661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113. https://doi.org/10.1259/bjr/59448833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qing Y’a, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327. https://doi.org/10.2147/IJN.S165125

  24. Medina Cruz D, Mi G, Webster TJ (2018) Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A 106(5):1400–1412. https://doi.org/10.1002/jbm.a.36347

    Article  CAS  PubMed  Google Scholar 

  25. Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M (2017) Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J Dent Biomater 4(1):347–352. http://www.ncbi.nlm.nih.gov/pubmed/28959764

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z (2011) Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomedicine 6:2321–2326. https://doi.org/10.2147/IJN.S25460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu Q-H (2017) Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine 13(1):297–305. https://doi.org/10.1016/j.nano.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  28. Allaedini G, Tasirin SM, Aminayi P (2016) The effects of cerium doping concentration on the properties and photocatalytic activity of bimetallic Mo/Ce catalyst. Russ J Phys Chem A 90(10):2080–2088. https://doi.org/10.1134/S0036024416080094

    Article  CAS  Google Scholar 

  29. Jiang H-L, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21(36):13705. https://doi.org/10.1039/c1jm12020d

    Article  CAS  Google Scholar 

  30. Sun Y, Lei C (2009) Synthesis of out-of-substrate Au-Ag nanoplates with enhanced stability for catalysis. Angew Chem Int Ed 48(37):6824–6827. https://doi.org/10.1002/anie.200902305

    Article  CAS  Google Scholar 

  31. Cho J, Wang M, Gonzalez-Lepera C, Mawlawi O, Cho SH (2016) Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Med Phys 43(8 Part1):4775–4788. https://doi.org/10.1118/1.4958961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li JL, Tian B, Li T, Dai S, Weng YL, Lu JJ, Xu XL, Jin Y, Pang RJ, Hua YJ (2018a) Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine 13:1411–1424. https://doi.org/10.2147/IJN.S149079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li X, Odoom-Wubah T, Huang J (2018b) Biosynthesis of Ag–Pd bimetallic alloy nanoparticles through hydrolysis of cellulose triggered by silver sulfate. RSC Adv 8(53):30340–30345. https://doi.org/10.1039/C8RA04301A

    Article  CAS  Google Scholar 

  34. Li H, Jo JK, Zhang LD, Ha C-S, Suh H, Kim I (2010a) Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 26(23):18442–18453. https://doi.org/10.1021/la103483c

    Article  CAS  PubMed  Google Scholar 

  35. Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Whaley Bishnoi S (2010b) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398(2):689–700. https://doi.org/10.1007/s00216-010-3915-1

    Article  CAS  PubMed  Google Scholar 

  36. Anu Mary Ealia S, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263(3):032019. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  37. Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6):066501. https://doi.org/10.1088/0034-4885/76/6/066501

    Article  CAS  PubMed  Google Scholar 

  38. Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26(16):13086–13096. https://doi.org/10.1021/la903890h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee Y-H, Chuang S-M, Huang S-C, Tan X, Liang R-Y, Yang GCC, Chueh PJ (2017) Biocompatibility assessment of nanomaterials for environmental safety screening. Environ Toxicol 32(4):1170–1182. https://doi.org/10.1002/tox.22313

    Article  CAS  PubMed  Google Scholar 

  40. Mantis Deposition Systems (2019). https://www.mantisdeposition.com/nanoparticlegenerators.html

  41. Nanocluster Deposition Source (2019). http://www.oaresearch.co.uk/oaresearch/cluster/

  42. Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006

    Article  PubMed  Google Scholar 

  43. Xiao Q, Yao Z, Liu J, Hai R, Oderji HY, Ding H (2011) Synthesis and characterization of Ag–Ni bimetallic nanoparticles by laser-induced plasma. Thin Solid Films 519(20):7116–7119. https://doi.org/10.1016/J.TSF.2011.04.201

    Article  CAS  Google Scholar 

  44. Liu J, Ma X, Yang L, Liu X, Han A, Lv H, Zhang C, Xu S (2018) In situ green oxidation synthesis of Ti 3+ and N self-doped SrTiOx Ny nanoparticles with enhanced photocatalytic activity under visible light. RSC Adv 8(13):7142–7151. https://doi.org/10.1039/C7RA13523H

    Article  CAS  Google Scholar 

  45. Barnett GH, Chen CC, Gross RE, Sloan AE (2016) Introduction: laser ablation techniques. Neurosurg Focus 41(4):E1. https://doi.org/10.3171/2016.8.FOCUS16319

    Article  PubMed  Google Scholar 

  46. Tajdidzadeh M, Azmi BZ, Yunus WMM, Talib ZA, Sadrolhosseini AR, Karimzadeh K, Gene SA, Dorraj M (2014) Synthesis of silver nanoparticles dispersed in various aqueous media using laser ablation. ScientificWorldJournal 2014:324921. https://doi.org/10.1155/2014/324921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A, Lugarà PM, Palazzo G, Cioffi N (2018) The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics (Basel) 7(3):E67. https://doi.org/10.3390/antibiotics7030067

    Article  CAS  Google Scholar 

  48. Amendola V, Meneghetti M, Bakr OM, Riello P, Polizzi S, Anjum DH, Fiameni S et al (2013) Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 5(12):5611. https://doi.org/10.1039/c3nr01119d

    Article  CAS  PubMed  Google Scholar 

  49. Peng S, Lei C, Ren Y, Cook RE, Sun Y (2011) Plasmonic/magnetic bifunctional nanoparticles. Angew Chem Int Ed 50(14):3158–3163. https://doi.org/10.1002/anie.201007794

    Article  CAS  Google Scholar 

  50. Wang X, Sun S, Huang Z, Zhang H, Zhang S (2014) Preparation and catalytic activity of PVP-protected Au/Ni bimetallic nanoparticles for hydrogen generation from hydrolysis of basic NaBH4 solution. Int J Hydrog Energy 39(2):905–916. https://doi.org/10.1016/J.IJHYDENE.2013.10.122

    Article  CAS  Google Scholar 

  51. Mukha I, Vityuk N, Grodzyuk G, Shcherbakov S, Lyberopoulou A, Efstathopoulos EP, Gazouli M (2017) Anticancer effect of Ag, Au, and Ag/Au bimetallic nanoparticles prepared in the presence of tryptophan. J Nanosci Nanotechnol 17(12):8987–8994. https://doi.org/10.1166/jnn.2017.14106

    Article  CAS  Google Scholar 

  52. Shmarakov IO, Mukha IP, Karavan VV, Chunikhin OY, Marchenko MM, Smirnova NP, Eremenko AM (2014) Tryptophan-assisted synthesis reduces bimetallic gold/silver nanoparticle cytotoxicity and improves biological activity. Nanobiomedicine 1:6. https://doi.org/10.5772/59684

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pal A, Shah S, Devi S (2007) Preparation of silver, gold and silver–gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids Surf A Physicochem Eng Asp 302(1–3):483–487. https://doi.org/10.1016/j.colsurfa.2007.03.032

    Article  CAS  Google Scholar 

  54. Nakamura T, Sato S (2015) Green and facile synthesis of Pd-Pt alloy nanoparticles by laser irradiation of aqueous solution. J Nanosci Nanotechnol 15(1):426–432. http://www.ncbi.nlm.nih.gov/pubmed/26328375

    Article  CAS  PubMed  Google Scholar 

  55. Mottaghi N, Ranjbar M, Farrokhpour H, Khoshouei M, Khoshouei A, Kameli P, Salamati H, Tabrizchi M, Jalilian-Nosrati M (2014) Ag/Pd core-shell nanoparticles by a successive method: pulsed laser ablation of Ag in water and reduction reaction of PdCl2. Appl Surf Sci 292:892–897. https://www.sciencedirect.com/science/article/pii/S0169433213023465

    Article  CAS  Google Scholar 

  56. Zielińska-Jurek A, Zaleska A (2014) Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catal Today 230:104–111. https://www.sciencedirect.com/science/article/pii/S0920586113006494

    Article  Google Scholar 

  57. Hierso J-C, Feurer R, Poujardieu J, Kihn Y, Kalck P (1998) Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles. J Mol Catal A Chem 135(3):321–325. https://doi.org/10.1016/S1381-1169(98)00125-3

    Article  CAS  Google Scholar 

  58. Choi DS, Robertson AW, Warner JH, Kim SO, Kim H (2016) Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv Mater 28(33):7115–7122. https://doi.org/10.1002/adma.201600469

    Article  CAS  PubMed  Google Scholar 

  59. Hermannsdörfer J, Friedrich M, Miyajima N, Albuquerque RQ, Kümmel S, Kempe R (2012) Ni/Pd@MIL-101: synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew Chem Int Ed 51(46):11473–11477. https://doi.org/10.1002/anie.201205078

    Article  CAS  Google Scholar 

  60. Lee Y-J, Barrera D, Luo K, Hsu JWP (2012) In situ chemical oxidation of ultrasmall MoOx nanoparticles in suspensions. J Nanotechnol 2012:1–5. https://doi.org/10.1155/2012/195761

    Article  CAS  Google Scholar 

  61. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96. https://www.sciencedirect.com/science/article/pii/S0001868608001449

    Article  CAS  Google Scholar 

  62. Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112:195–202. https://doi.org/10.1016/J.CARBPOL.2014.05.081

    Article  CAS  PubMed  Google Scholar 

  63. Rac-Rumijowska O, Fiedot M, Suchorska-Wozniak P, Teterycz H (2017) Synthesis of gold nanoparticles with different kinds of stabilizing agents. In: 2017 40th international spring seminar on electronics technology (ISSE). IEEE, pp 1–6. https://doi.org/10.1109/ISSE.2017.8000972

  64. Zaytsev SY, Plyusnin PE, Slavinskaya EM, Shubin YV (2017) Synthesis of bimetallic nanocompositions AuxPd1-x/γ-Al2O3 for catalytic CO oxidation. J Nanopart Res 19(11):367. https://doi.org/10.1007/s11051-017-4061-x

    Article  CAS  Google Scholar 

  65. Yu J, Li J, Zhang W, Chang H (2015) Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem Sci 6(12):6705–6716. https://doi.org/10.1039/c5sc01941a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saedy S, Palagin D, Safonova O, van Bokhoven JA, Khodadadi AA, Mortazavi Y (2017) Understanding the mechanism of synthesis of Pt3 Co intermetallic nanoparticles via preferential chemical vapor deposition. J Mater Chem A 5(46):24396–24406. https://doi.org/10.1039/C7TA06737B

    Article  CAS  Google Scholar 

  67. Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290(1):117–129. https://doi.org/10.1016/J.JCIS.2005.04.034

    Article  CAS  PubMed  Google Scholar 

  68. Huttel Y (2017) Gas-phase synthesis of nanoparticles. Edited by Yves Huttel. ISBN: 978-3-527-34060-6. p.416

    Google Scholar 

  69. Llamosa Pérez D, Espinosa A, Martínez L, Román E, Ballesteros C, Mayoral A, García-Hernández M, Huttel Y (2013) Thermal diffusion at nanoscale: from CoAu alloy nanoparticles to Co@Au core/shell structures. J Phys Chem C 117(6):3101–3108. https://doi.org/10.1021/jp310971f

    Article  CAS  Google Scholar 

  70. Oprea B, Martínez L, Román E, Vanea E, Simon S, Huttel Y (2015) Dispersion and functionalization of nanoparticles synthesized by gas aggregation source: opening new routes toward the fabrication of nanoparticles for biomedicine. Langmuir 31(51):13813–13820. https://doi.org/10.1021/acs.langmuir.5b03399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oprea B, Martínez L, Román E, Espinosa A, Ruano M, Llamosa D, García-Hernández M, Ballesteros C, Huttel Y (2014) Growth and characterization of FeB nanoparticles for potential application as magnetic resonance imaging contrast agent. Mater Res Express 1(2):025008. https://doi.org/10.1088/2053-1591/1/2/025008

    Article  CAS  Google Scholar 

  72. Mayoral A, Martínez L et al (2019) Tuning the size, composition and structure of Au and Co50 Au50 nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis. Nanotechnology 30(6):065606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martínez L, Díaz M, Román E, Ruano M, Llamosa PD, Huttel Y (2012) Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir 28(30):11241–11249. https://doi.org/10.1021/la3022134

    Article  CAS  PubMed  Google Scholar 

  74. Llamosa D, Ruano M, Martínez L, Mayoral A, Roman E, García-Hernández M, Huttel Y (2014) The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 6(22):13483–13486. https://doi.org/10.1039/c4nr02913e

    Article  CAS  PubMed  Google Scholar 

  75. Martínez L, Mayoral A, Espiñeira M, Roman E, Palomares FJ, Huttel Y (2017) Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale 9(19):6463–6470. https://doi.org/10.1039/c7nr01148b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44. http://www.ncbi.nlm.nih.gov/pubmed/24772325

    Article  CAS  Google Scholar 

  77. Kadzinski M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2018) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res 264(2):472–490. https://doi.org/10.1016/j.ejor.2016.10.019

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298. https://pubs.acs.org/doi/10.1021/cg0255164

    Article  CAS  Google Scholar 

  79. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48. https://doi.org/10.1016/j.colsurfb.2010.10.035

    Article  CAS  PubMed  Google Scholar 

  80. Patra N, Taviti AC, Sahoo A, Pal A, Beuria TK, Behera A, Patra S (2017) Green synthesis of multi-metallic nanocubes. RSC Adv 7(56):35111–35118. https://doi.org/10.1039/C7RA05493A

    Article  CAS  Google Scholar 

  81. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262. https://doi.org/10.1016/J.NANO.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  82. Mubarakali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. https://www.sciencedirect.com/science/article/pii/S0167577X1200047X

    Article  CAS  Google Scholar 

  83. Xu H, Xiao Y, Xu M, Cui H, Tan L, Feng N, Liu X, Qiu G, Dong H, Xie J (2019) Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology 30(6):065607. https://doi.org/10.1088/1361-6528/aaf2a6

    Article  CAS  PubMed  Google Scholar 

  84. Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J et al (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9(72):1705–1712. https://doi.org/10.1098/rsif.2012.0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hosseinkhani B, Søbjerg LS, Rotaru A-E, Emtiazi G, Skrydstrup T, Meyer RL (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109(1):45–52. https://doi.org/10.1002/bit.23293

    Article  CAS  PubMed  Google Scholar 

  86. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. 43(15):5115–5122. https://doi.org/10.1007/s10853-008-2745-4

  87. Zhao X, Zhou L, Rajoka MSR, Yan L, Jiang C, Shao D, Zhu J et al (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835. https://doi.org/10.1080/07388551.2017.1414141

    Article  CAS  PubMed  Google Scholar 

  88. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98. https://doi.org/10.1186/s11671-016-1311-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88(3):167–177. http://www.ncbi.nlm.nih.gov/pubmed/12618037

    Article  CAS  PubMed  Google Scholar 

  90. Pantidos N (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5). https://doi.org/10.4172/2157-7439.1000233

  91. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109. https://doi.org/10.1021/JA027296O

    Article  CAS  PubMed  Google Scholar 

  92. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520. https://doi.org/10.1002/smll.200400053

    Article  CAS  PubMed  Google Scholar 

  93. Dasaratrao Sawle B, Salimath B, Deshpande R, Dhondojirao Bedre M, Krishnamurthy Prabhakar B, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012. https://doi.org/10.1088/1468-6996/9/3/035012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381. https://doi.org/10.1016/J.SAA.2009.02.037

    Article  PubMed  Google Scholar 

  95. Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensors Actuators B Chem 148(1):247–252. https://doi.org/10.1016/J.SNB.2010.04.031

    Article  CAS  Google Scholar 

  96. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8(11):7278–7308. https://doi.org/10.3390/ma8115377

    Article  CAS  Google Scholar 

  97. Lu F, Sun D, Huang J, Du M, Yang F, Chen H, Hong Y, Li Q (2014) Plant-mediated synthesis of Ag–Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2(5):1212–1218. https://doi.org/10.1021/sc500034r

    Article  CAS  Google Scholar 

  98. Phan CM, Nguyen HM (2017) Role of capping agent in wet synthesis of nanoparticles. 121(17):3213–3219. https://doi.org/10.1021/acs.jpca.7b02186

  99. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24(4):473–484. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  PubMed  Google Scholar 

  100. Singh P, Kim Y-J, Zhang D, Yang D-C (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  101. Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA (2016b) Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine 11:1889–1897. https://doi.org/10.2147/IJN.S102488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102. https://doi.org/10.5487/TR.2016.32.2.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun D, Zhang G, Huang J, Wang H, Li Q (2014) Plant-mediated fabrication and surface enhanced Raman property of flower-like Au@Pd nanoparticles. Materials 7(2):1360–1369. https://doi.org/10.3390/ma7021360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q (2011) Green synthesis of Au–Pd bimetallic nanoparticles: single-step bioreduction method with plant extract. Mater Lett 65(19–20):2989–2991. https://doi.org/10.1016/J.MATLET.2011.06.079

    Article  CAS  Google Scholar 

  105. Ganaie SU, Abbasi T, Abbasi SA (2016) Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus. J Exp Nanosci 11(6):395–417. https://doi.org/10.1080/17458080.2015.1070311

    Article  CAS  Google Scholar 

  106. Chopade B, Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Kitture R, Kale S, Bellare J (2015) Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea Bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10:7477. https://doi.org/10.2147/IJN.S91579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Malapermal V, Mbatha JN, Gengan RM, Anand K (2015) Biosynthesis of bimetallic Au-Ag nanoparticles using Ocimum basilicum (L.) with antidiabetic and antimicrobial properties. Adv Mater Lett 6(12):1050–1057. https://doi.org/10.5185/amlett.2015.5997

    Article  CAS  Google Scholar 

  108. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au Core–Ag Shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  109. Dobrucka R, Dlugaszewska J (2018) Antimicrobial activity of the biogenically synthesized core-shell Cu@Pt nanoparticles. Saudi Pharm J 26(5):643–650. https://doi.org/10.1016/J.JSPS.2018.02.028

    Article  PubMed  PubMed Central  Google Scholar 

  110. Xia B, He F, Li L (2013) Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 29(15):4901–4907. https://doi.org/10.1021/la400355u

    Article  CAS  PubMed  Google Scholar 

  111. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389. https://doi.org/10.1016/J.MATERRESBULL.2010.12.001

    Article  CAS  Google Scholar 

  112. Alarfaj NA, El-Tohamy MF (2016) Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride. Luminescence 31(6):1194–1200. https://doi.org/10.1002/bio.3089

    Article  CAS  PubMed  Google Scholar 

  113. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1(7):703–712. https://doi.org/10.1021/sc4000362

    Article  CAS  Google Scholar 

  114. Khatami M, Sharifi I, Nobre MAL, Zafarnia N, Aflatoonian MR (2018) Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev 11(2):125–134. https://doi.org/10.1080/17518253.2018.1444797

    Article  CAS  Google Scholar 

  115. Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78. https://www.sciencedirect.com/science/article/abs/pii/S0167577X14015997

    Article  CAS  Google Scholar 

  116. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123

    PubMed  PubMed Central  Google Scholar 

  117. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403. https://doi.org/10.7759/cureus.1403

    Article  PubMed  PubMed Central  Google Scholar 

  118. Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121. https://doi.org/10.2147/NSA.S133415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials (Basel) 6(4). https://doi.org/10.3390/nano6040071

  120. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71. https://doi.org/10.1038/s41565-017-0013-y

    Article  CAS  PubMed  Google Scholar 

  121. Chou K-S, Chen C-C (2007) Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous Mesoporous Mater 98(1–3):208–213. https://doi.org/10.1016/J.MICROMESO.2006.09.006

    Article  CAS  Google Scholar 

  122. Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199. http://www.ncbi.nlm.nih.gov/pubmed/25000181

    Article  CAS  PubMed  Google Scholar 

  123. Zhao Y, Ye C, Liu W, Chen R, Jiang X (2014) Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed 53(31):8127–8131. https://doi.org/10.1002/anie.201401035

    Article  CAS  Google Scholar 

  124. Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale 3(12):5120. https://doi.org/10.1039/c1nr10703h

    Article  CAS  PubMed  Google Scholar 

  125. Holden MS, Black J, Lewis A, Boutrin M-C, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC (2016) Antibacterial activity of partially oxidized Ag/Au nanoparticles against the oral pathogen Porphyromonas gingivalis W83. J Nanomater 2016:1–11. https://doi.org/10.1155/2016/9605906

    Article  CAS  Google Scholar 

  126. Antonoglou O, Giannousi K, Arvanitidis J, Mourdikoudis S, Pantazaki A, Dendrinou-Samara C (2017) Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG. J Inorg Biochem 177:159–170. https://doi.org/10.1016/j.jinorgbio.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  127. Fakhri A, Tahami S, Naji M (2017) Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B Biol 169:21–26. https://doi.org/10.1016/j.jphotobiol.2017.02.014

    Article  CAS  Google Scholar 

  128. Akinsiku AA, Dare EO, Ajanaku KO, Ajani OO, Olugbuyiro JAO, Siyanbola TO, Ejilude O, Emetere ME (2018) Modeling and synthesis of Ag and Ag/Ni allied bimetallic nanoparticles by green method: optical and biological properties. Int J Biomater 2018:1–17. https://doi.org/10.1155/2018/9658080

    Article  CAS  Google Scholar 

  129. Cooper GM (2000) The development and causes of cancer. https://www.ncbi.nlm.nih.gov/books/NBK9963/

  130. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  131. Mariotto AB, Robin Yabroff K, Shao Y, Feuer EJ, Brown ML (2011) Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 103(2):117–128. https://doi.org/10.1093/jnci/djq495

    Article  PubMed  PubMed Central  Google Scholar 

  132. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3(3):3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Institute for Quality and Efficiency in Health Care: Executive Summaries (2005) Institute for Quality and Efficiency in Health Care: Executive. Institute for Quality and Efficiency in Health Care (IQWiG), Cologne. http://www.ncbi.nlm.nih.gov/pubmed/23101074

    Google Scholar 

  134. Gelband H, Jha P, Sankaranarayanan R, et al (2016) Cancer: disease control priorities, vol 3, 3rd edn. The International Bank for Reconstruction and Development/The World Bank, Washington, DC, p 2016. https://doi.org/10.1596/978-1-4648-0349-9

  135. Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E (2009) Potential chemotherapy side effects: what do oncologists tell parents? Pediatr Blood Cancer 52(4):497–502. https://doi.org/10.1002/pbc.21835

    Article  PubMed  PubMed Central  Google Scholar 

  136. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  137. Heath JR, Davis ME (2008) Nanotechnology and cancer. Undefined. https://www.semanticscholar.org/paper/Nanotechnology-and-cancer.-Heath-Davis/47006f38bd3a82be6d869ead7748f841a4184cf3

  138. Gmeiner WH, Ghosh S (2015) Nanotechnology for cancer treatment. Nanotechnol Rev 3(2):111–122. https://doi.org/10.1515/ntrev-2013-0013

    Article  CAS  PubMed  Google Scholar 

  139. Yuan Y-G, Peng Q-L, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed 12:6487–6502. https://doi.org/10.2147/IJN.S135482

    Article  CAS  Google Scholar 

  140. De Matteis V, Cascione M, Toma C, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5):319. https://doi.org/10.3390/nano8050319

    Article  CAS  PubMed Central  Google Scholar 

  141. Shmarakov I, Mukha I, Vityuk N, Borschovetska V, Zhyshchynska N, Grodzyuk G, Eremenko A (2017) Antitumor activity of alloy and core-shell-type bimetallic AgAu nanoparticles. Nanoscale Res Lett 12(1):333. https://doi.org/10.1186/s11671-017-2112-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mishra SK, Kannan S (2017) A bimetallic silver–neodymium theranostic nanoparticle with multimodal NIR/MRI/CT imaging and combined chemo-photothermal therapy. Inorg Chem 56(19):12054–12066. https://doi.org/10.1021/acs.inorgchem.7b02103

    Article  CAS  PubMed  Google Scholar 

  143. Kumar R, Gokulakrishnan N, Kumar R, Krishna VM, Saravanan A, Supriya S, Somanathan T (2015) Can be a bimetal oxide ZnO-MgO nanoparticles anticancer drug carrier and deliver? Doxorubicin adsorption/release study. J Nanosci Nanotechnol 15(2):1543–1553. http://www.ncbi.nlm.nih.gov/pubmed/26353689

    Article  CAS  PubMed  Google Scholar 

  144. Sathya K, Saravanathamizhan R, Baskar G (2018) Ultrasonic assisted green synthesis of Fe and Fe/Zn bimetallic nanoparticles for in vitro cytotoxicity study against HeLa cancer cell line. Mol Biol Rep 45(5):1397–1404. https://doi.org/10.1007/s11033-018-4302-9

    Article  CAS  PubMed  Google Scholar 

  145. Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741. https://doi.org/10.2147/IJN.S76501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194. https://doi.org/10.1517/17425240903229031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lindner JR, Link J (2018) Molecular imaging in drug discovery and development. Circ Cardiovasc Imaging 11(2):e005355. https://doi.org/10.1161/CIRCIMAGING.117.005355

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hacker M, Beyer T, Baum RP, Kalemis A, Lammertsma AA, Lewington V, Talbot J-N, Verzijlbergen F (2015) Nuclear medicine innovations help (drive) healthcare (benefits). Eur J Nucl Med Mol Imaging 42(2):173–175. https://doi.org/10.1007/s00259-014-2957-6

    Article  PubMed  Google Scholar 

  149. Shukla AK, Kumar U (2006) Positron emission tomography: an overview. J Med Phys 31(1):13–21. https://doi.org/10.4103/0971-6203.25665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29(3):193–207. https://doi.org/10.1097/MNM.0b013e3282f3a515

    Article  PubMed  Google Scholar 

  151. Pang B, Zhao Y, Luehmann H, Yang X, Detering L, You M, Zhang C et al (2016) 64Cu-Doped PdCu@Au Tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment. ACS Nano 10(3):3121–3131. https://doi.org/10.1021/ACSNANO.5B07968

    Article  CAS  PubMed  Google Scholar 

  152. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA (2012) Review of functional/anatomical imaging in oncology. Nucl Med Commun 33(4):349–361. https://doi.org/10.1097/MNM.0b013e32834ec8a5

    Article  PubMed  PubMed Central  Google Scholar 

  153. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864. https://doi.org/10.2147/IJN.S25446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li B, Ye K, Zhang Y, Qin J, Zou R, Xu K, Huang X et al (2015a) Photothermal theragnosis synergistic therapy based on bimetal sulphide nanocrystals rather than nanocomposites. Adv Mater 27(8):1339–1345. https://doi.org/10.1002/adma.201404257

    Article  CAS  PubMed  Google Scholar 

  155. Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, Zhu W et al (2015b) New approach to fully ordered Fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15(4):2468–2473. https://doi.org/10.1021/acs.nanolett.5b00320

    Article  CAS  PubMed  Google Scholar 

  156. Maney V, Singh M (2017) An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine 12(21):2625–2640. https://doi.org/10.2217/nnm-2017-0228

    Article  CAS  PubMed  Google Scholar 

  157. Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, Scott MJ et al (2009) Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3(12):3917–3926. https://doi.org/10.1021/nn900819y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choi J-s, Lee J-H, Shin T-H, Song H-T, Kim EY, Cheon J (2010) Self-confirming ‘AND’ logic nanoparticles for fault-free MRI. J Am Chem Soc 132(32):11015–11017. https://doi.org/10.1021/ja104503g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, and applications of T2∗-based MR imaging and its special applications. RadioGraphics 29(5):1433–1449. https://doi.org/10.1148/rg.295095034

    Article  PubMed  PubMed Central  Google Scholar 

  160. McNamara K, Tofail SAM (2015) Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 17(42):27981–27995. https://doi.org/10.1039/C5CP00831J

    Article  CAS  PubMed  Google Scholar 

  161. Sun C, Lee J, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery☆. Adv Drug Deliv Rev 60(11):1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kumal RR, Abu-Laban M, Hamal P, Kruger B, Smith HT, Hayes DJ, Haber LH (2018) Near-infrared photothermal release of SiRNA from the surface of colloidal gold–silver–gold core–shell–shell nanoparticles studied with second-harmonic generation. J Phys Chem C 122(34):19699–19704. https://doi.org/10.1021/acs.jpcc.8b06117

    Article  CAS  Google Scholar 

  163. Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8(19):3016–3027. https://doi.org/10.1002/smll.201200575

    Article  CAS  PubMed  Google Scholar 

  164. Rozanova N, Zhang JZ (2009) Photothermal ablation therapy for cancer based on metal nanostructures. Sci China Ser B Chem 52(10):1559–1575. https://doi.org/10.1007/s11426-009-0247-0

    Article  CAS  Google Scholar 

  165. Sharma H, Mishra PK, Talegaonkar S, Vaidya B (2015) Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 20(9):1143–1151. https://doi.org/10.1016/j.drudis.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  166. Liu X, Zhang X, Zhu M, Lin G, Liu J, Zhou Z, Tian X, Pan Y (2017) PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Appl Mater Interfaces 9(1):279–285. https://doi.org/10.1021/acsami.6b15183

    Article  CAS  PubMed  Google Scholar 

  167. Gan N, Xiong P, Wang J, Li T, Hu F, Cao Y, Zheng L (2013) A novel signal-amplified immunoassay for the detection of C-reactive protein using HRP-doped magnetic nanoparticles as labels with the electrochemical quartz crystal microbalance as a detector. J Anal Methods Chem 2013:1–8. https://doi.org/10.1155/2013/482316

    Article  CAS  Google Scholar 

  168. Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe 3 O 4 nanoparticle ‘nano-pearl-necklaces’ for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed 48(15):2759–2763. https://doi.org/10.1002/anie.200805282

    Article  CAS  Google Scholar 

  169. Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, Sardar D, Ray PC (2013) Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chem Eur J 19(8):2839–2847. https://doi.org/10.1002/chem.201202948

    Article  CAS  PubMed  Google Scholar 

  170. Yamada M, Foote M, Prow TW (2015) Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3):428–445. https://doi.org/10.1002/wnan.1322

    Article  CAS  PubMed  Google Scholar 

  171. Cheng L-C, Huang J-H, Chen HM, Lai T-C, Yang K-Y, Liu R-S, Hsiao M, Chen C-H, Her L-J, Tsai DP (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22(5):2244–2253. https://doi.org/10.1039/C1JM13937A

    Article  Google Scholar 

  172. Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, Nikzamir M et al (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells Nanomed Biotechnol 46(Suppl 3):S336–S343. https://doi.org/10.1080/21691401.2018.1492931

    Article  CAS  PubMed  Google Scholar 

  173. Salvo P, Dini V, Kirchhain A, Janowska A, Oranges T, Chiricozzi A, Lomonaco T, Di Francesco F, Romanelli M (2017) Sensors and biosensors for C-reactive protein, temperature and PH, and their applications for monitoring wound healing: a review. Sensors 17(12):2952. https://doi.org/10.3390/s17122952

    Article  CAS  PubMed Central  Google Scholar 

  174. Chin SF, Iyer KS, Raston CL (2010) Superparamagnetic core-shell nanoparticles for biomedical applications. In: 2010 international conference on enabling science and nanotechnology (ESciNano). IEEE, p 1. https://doi.org/10.1109/ESCINANO.2010.5700936

  175. Zhou T, Wu B, Xing D (2012) Bio-modified Fe3 O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22(2):470–477. https://doi.org/10.1039/C1JM13692E

    Article  CAS  Google Scholar 

  176. Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334(4):1317–1321. https://doi.org/10.1016/j.bbrc.2005.07.028

    Article  CAS  PubMed  Google Scholar 

  177. Welser K, Adsley R, Moore BM, Chan WC, Aylott JW (2011) Protease sensing with nanoparticle based platforms. Analyst 136(1):29–41. https://doi.org/10.1039/c0an00429d

    Article  CAS  PubMed  Google Scholar 

  178. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Tetsuo Uyeda H, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nat Mater 5(7):581–589. https://doi.org/10.1038/nmat1676

    Article  CAS  PubMed  Google Scholar 

  179. Choi JH, Chen KH, Strano MS (2006) Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J Am Chem Soc 128(49):15584–15585. https://doi.org/10.1021/JA066506K

    Article  CAS  PubMed  Google Scholar 

  180. Chiriac H, Tibu M, Moga A-E, Herea DD (2005) Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater 293(1):671–676. https://doi.org/10.1016/J.JMMM.2005.02.043

    Article  CAS  Google Scholar 

  181. Lin D, Wu J, Wang M, Yan F, Ju H (2012) Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84(8):3662–3668. https://doi.org/10.1021/ac3001435

    Article  CAS  PubMed  Google Scholar 

  182. Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):11. https://doi.org/10.1186/1743-8977-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. https://doi.org/10.1002/smll.200700378

    Article  CAS  PubMed  Google Scholar 

  184. Moise S, Céspedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND (2017) The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep 7(1):39922. https://doi.org/10.1038/srep39922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Medina-Cruz, D. et al. (2020). Bimetallic Nanoparticles for Biomedical Applications: A Review. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_16

Download citation

Publish with us

Policies and ethics