Skip to main content

Osteoinductive and Osteoconductive Biomaterials

  • Chapter
  • First Online:
Racing for the Surface

Abstract

With combinatorial approaches getting stronger to design materials with better functionalities and compatibility for restoring bone tissue, it is becoming important to understand the progress and evolution of existing and newly designed materials. For being clinically usable, they should have features that address the biomechanical, biochemical, and medical requirements.

Their various characteristics determine the cascade of events that take place at the site of bone healing. They should be selected based on the specific purpose with maximum benefit to the patient in long run. The current efforts in this domain are to render the orthopedic procedures minimally invasive and maximally effective.

This chapter encompasses the journey of classes of biomaterials used for their osteoinductive and osteoconductive properties and discusses the challenges for bringing them closer to fulfil the requisites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurencin CT, Khan Y, Kofron M et al (2006) THE ABJS NICOLAS ANDRY AWARD: tissue engineering of bone and ligament. Clin Orthop Relat Res. 447:221–236. https://doi.org/10.1097/01.blo.0000194677.02506.45

    Article  PubMed  Google Scholar 

  2. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2(1):87–101. https://doi.org/10.1586/17434440.2.1.87

    Article  PubMed  Google Scholar 

  3. Ozdemir T, Higgins AM, Brown JL (2013) Osteoinductive biomaterial geometries for bone regenerative engineering. Curr Pharm Des 19(19):3446–3455. http://www.ncbi.nlm.nih.gov/pubmed/23432675. Accessed 11 Apr 2019

    Article  CAS  Google Scholar 

  4. Urist MR (1965) Bone: formation by autoinduction. Science (80- ) 150(3698):893 LP–893899. http://science.sciencemag.org/content/150/3698/893.abstract

    Article  Google Scholar 

  5. Wilson-Hench J (1987) Osteoinduction. Prog Biomed Eng 4:29

    Google Scholar 

  6. Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standrads. J Dent Res. 91(8):736–744. https://doi.org/10.1177/0022034511435260

    Article  CAS  PubMed  Google Scholar 

  7. Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med. 1(1):25–32. https://doi.org/10.1002/term.5

    Article  CAS  PubMed  Google Scholar 

  8. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. 1991. http://wiredspace.wits.ac.za/handle/10539/19185. Accessed 27 Feb 2019.

    Book  Google Scholar 

  9. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 17(1):31–35. https://doi.org/10.1016/0142-9612(96)80752-6

    Article  CAS  PubMed  Google Scholar 

  10. Yuan H, de Bruijn JD, Zhang X, van Blitterswijk CA, de Groot K (2001) Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. J Mater Sci Mater Med. 12(9):761–766. https://doi.org/10.1023/A:1013957431372

    Article  CAS  PubMed  Google Scholar 

  11. Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1(2):209–226. https://doi.org/10.1016/S0174-173X(81)80021-0

    Article  CAS  PubMed  Google Scholar 

  12. Yuan H, van den Doel M, Li S, van Blitterswijk CA, de Groot K, de Bruijn JD (2002) A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med. 13(12):1271–1275. https://doi.org/10.1023/A:1021191432366

    Article  CAS  PubMed  Google Scholar 

  13. Ripamonti U (1991) The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg Am. 73(5):692–703. http://www.ncbi.nlm.nih.gov/pubmed/1675218. Accessed 26 Feb 2019

    Article  CAS  Google Scholar 

  14. Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res. 7(4):568–578. https://doi.org/10.1002/jor.1100070415

    Article  CAS  PubMed  Google Scholar 

  15. Goshima J, Goldberg VM, Caplan AI (1991) The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res. 262:298–311. http://www.ncbi.nlm.nih.gov/pubmed/1984928. Accessed 27 Feb 2019

    Google Scholar 

  16. Klein C, de Groot K, Chen W, Li Y, Zhang X (1994) Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials. 15(1):31–34. https://doi.org/10.1016/0142-9612(94)90193-7

    Article  CAS  PubMed  Google Scholar 

  17. Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X (1996) Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials. 17(22):2131–2137. http://www.ncbi.nlm.nih.gov/pubmed/8922598. Accessed 27 Feb 2019

    Article  CAS  Google Scholar 

  18. Hari RA (1992) Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr Opin Cell Biol. 4(5):850–855. https://doi.org/10.1016/0955-0674(92)90110-X

    Article  Google Scholar 

  19. Wozney JM (1992) The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev. 32(2):160–167. https://doi.org/10.1002/mrd.1080320212

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, de Groot K, Hunziker E (2005) BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 36(5):745–757. https://doi.org/10.1016/j.bone.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  21. Barradas AMC, Yuan H, Clemens A van B, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cells Mater. 21:407–429. https://doi.org/10.22203/eCM.v021a31

    Article  CAS  Google Scholar 

  22. Chocholata P, Kulda V, Babuska V, Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel). 12(4):568. https://doi.org/10.3390/ma12040568

    Article  CAS  PubMed Central  Google Scholar 

  23. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C. 71:1253–1266. https://doi.org/10.1016/j.msec.2016.11.027

    Article  CAS  Google Scholar 

  24. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface. 5(27):1137–1158. https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamrani S, Fleck C (2019) Biodegradable magnesium alloys as temporary orthopaedic implants: a review. BioMetals. 32(2):185–193. https://doi.org/10.1007/s10534-019-00170-y

    Article  CAS  PubMed  Google Scholar 

  26. Lee J-W, Han H-S, Han K-J et al (2016) Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 113(3):716–721. https://doi.org/10.1073/pnas.1518238113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witte F, Feyerabend F, Maier P et al (2007) Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 28(13):2163–2174. https://doi.org/10.1016/J.BIOMATERIALS.2006.12.027

    Article  CAS  PubMed  Google Scholar 

  28. Courtenay J, Bryant M (2011) Bone ash replacement product is safer. Alum Times. 57

    Google Scholar 

  29. Charnley J (1960) Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br. 42-B:28–30. http://www.ncbi.nlm.nih.gov/pubmed/13855642. Accessed 23 Apr 2019

    Article  CAS  Google Scholar 

  30. Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater. 11(1):014105. https://doi.org/10.1088/1468-6996/11/1/014105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Younesi M, Bahrololoom ME, Fooladfar H (2010) Development of wear resistant NFSS–HA novel biocomposites and study of their tribological properties for orthopaedic applications. J Mech Behav Biomed Mater. 3(2):178–188. https://doi.org/10.1016/J.JMBBM.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Younesi M, Bahrololoom ME (2010) Formulation of the wear behaviour of nickel-free stainless-steel/hydroxyapatite bio-composites by response surface methodology. Proc Inst Mech Eng Part J J Eng Tribol. 224(11):1197–1207. https://doi.org/10.1243/13506501JET773

    Article  Google Scholar 

  33. Younesi M, Bahrololoom ME, Ahmadzadeh M (2010) Prediction of wear behaviors of nickel free stainless steel–hydroxyapatite bio-composites using artificial neural network. Comput Mater Sci. 47(3):645–654. https://doi.org/10.1016/J.COMMATSCI.2009.09.019

    Article  CAS  Google Scholar 

  34. Montanaro L, Cervellati M, Campoccia D, Arciola CR (2006) Promising in vitro performances of a new nickel-free stainless steel. J Mater Sci Mater Med. 17(3):267–275. https://doi.org/10.1007/s10856-006-7313-3

    Article  CAS  PubMed  Google Scholar 

  35. Torricelli P, Fini M, Borsari V et al (2003) Biomaterials in orthopedic surgery: effects of a nickel-reduced stainless steel on in vitro proliferation and activation of human osteoblasts. Int J Artif Organs. 26(10):952–957. https://doi.org/10.1177/039139880302601013

    Article  CAS  PubMed  Google Scholar 

  36. Thomann UI, Uggowitzer PJ (2000) Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear. 239(1):48–58. https://doi.org/10.1016/S0043-1648(99)00372-5

    Article  CAS  Google Scholar 

  37. Ren YB, Yang HJ, Yang K, Zhang BC (2007) In vitro biocompatibility of a new high nitrogen nickel free austenitic stainless steel. Key Eng Mater. 342-343:605–608. https://doi.org/10.4028/www.scientific.net/KEM.342-343.605

    Article  CAS  Google Scholar 

  38. Popkov AV, Gorbach EN, Kononovich NA, Popkov DA, Tverdokhlebov SI, Shesterikov EV (2017) Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis. Strateg Trauma Limb Reconstr. 12(2):107–113. https://doi.org/10.1007/s11751-017-0282-x

    Article  Google Scholar 

  39. Das A, Shukla M (2019) Surface morphology, bioactivity, and antibacterial studies of pulsed laser deposited hydroxyapatite coatings on Stainless Steel 254 for orthopedic implant applications. Proc Inst Mech Eng Part L J Mater Des Appl. 233(2):120–127. https://doi.org/10.1177/1464420716663029

    Article  CAS  Google Scholar 

  40. Sul Y-T, Johansson CB, Petronis S et al (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown:: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 23(2):491–501. https://doi.org/10.1016/S0142-9612(01)00131-4

    Article  CAS  PubMed  Google Scholar 

  41. Raikar GN, Gregory JC, Ong JL et al (1995) Surface characterization of titanium implants. J Vac Sci Technol A Vacuum, Surfaces, Film 13(5):2633–2637. https://doi.org/10.1116/1.579462

    Article  CAS  Google Scholar 

  42. de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA (2008) Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 25(10):2357–2369. https://doi.org/10.1007/s11095-008-9617-0

    Article  CAS  PubMed  Google Scholar 

  43. Bierbaum S, Hempel U, Geißler U et al (2003) Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res Part A. 67A(2):431–438. https://doi.org/10.1002/jbm.a.10084

    Article  CAS  Google Scholar 

  44. MacDonald DE, Markovic B, Allen M, Somasundaran P, Boskey AL (1998) Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials. J Biomed Mater Res. 41(1):120–130. https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<120::AID-JBM15>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  45. Roessler S, Born R, Scharnweber D, Worch H, Sewing A, Dard M (2001) Biomimetic coatings functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med. 12(10/12):871–877. https://doi.org/10.1023/A:1012807621414

    Article  CAS  PubMed  Google Scholar 

  46. van den Beucken JJJP, Vos MRJ, Thüne PC et al (2006) Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials. 27(5):691–701. https://doi.org/10.1016/J.BIOMATERIALS.2005.06.015

    Article  PubMed  Google Scholar 

  47. Ferris D, Moodie G, Dimond P, Giorani CW, Ehrlich M, Valentini R (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials. 20(23-24):2323–2331. https://doi.org/10.1016/S0142-9612(99)00161-1

    Article  CAS  PubMed  Google Scholar 

  48. Elmengaard B, Bechtold JE, Søballe K (2005) In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 26(17):3521–3526. https://doi.org/10.1016/J.BIOMATERIALS.2004.09.039

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Hunziker EB, Layrolle P, De Bruijn JD, De Groot K (2004) Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng. 10(1-2):101–108. https://doi.org/10.1089/107632704322791745

    Article  CAS  PubMed  Google Scholar 

  50. Schmidmaier G, Wildemann B, Cromme F, Kandziora F, Haas NP, Raschke M (2002) Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Bone. 30(6):816–822. https://doi.org/10.1016/S8756-3282(02)00740-8

    Article  CAS  PubMed  Google Scholar 

  51. van den Beucken JJJP, Walboomers XF, Boerman OC et al (2006) Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J Control Release 113(1):63–72. https://doi.org/10.1016/J.JCONREL.2006.03.016

    Article  PubMed  Google Scholar 

  52. van den Beucken JJJP, Walboomers XF, Leeuwenburgh SCG et al (2007) Multilayered DNA coatings: in vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomater. 3(4):587–596. https://doi.org/10.1016/J.ACTBIO.2006.12.007

    Article  PubMed  Google Scholar 

  53. De Jonge LT, Leeuwenburgh SCG, van de Beucken J, Wolke JGC, Jansen JA (2008) Electrosprayed enzyme coatings as bio-inspired alternatives to conventional bioceramic coatings for orthopedic and oral implants. Adv Funct Mater 19:755–762

    Article  Google Scholar 

  54. Xia Z, Yu X, Wei M (2012) Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. J Biomed Mater Res Part B Appl Biomater. 100B(3):871–881. https://doi.org/10.1002/jbm.b.31970

    Article  CAS  Google Scholar 

  55. Nishida M, Nakaji-Hirabayashi T, Kitano H, Saruwatari Y, Matsuoka K (2017) Titanium alloy modified with anti-biofouling zwitterionic polymer to facilitate formation of bio-mineral layer. Colloids Surfaces B Biointerfaces. 152:302–310. https://doi.org/10.1016/j.colsurfb.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  56. Yu P, Zhu X, Wang X et al (2016) Periodic nanoneedle and buffer zones constructed on a titanium surface promote osteogenic differentiation and bone calcification in vivo. Adv Healthc Mater. 5(3):364–372. https://doi.org/10.1002/adhm.201500461

    Article  CAS  PubMed  Google Scholar 

  57. George N, Nair AB (2018) Porous tantalum: a new biomaterial in orthopedic surgery. Fundam Biomater Met:243–268. https://doi.org/10.1016/B978-0-08-102205-4.00011-8

  58. Edelmann AR, Patel D, Allen RK, Gibson CJ, Best AM, Bencharit S (2019) Retrospective analysis of porous tantalum trabecular metal–enhanced titanium dental implants. J Prosthet Dent. 121(3):404–410. https://doi.org/10.1016/j.prosdent.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  59. Bencharit S, Byrd WC, Altarawneh S et al (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res. 16(6):817–826. https://doi.org/10.1111/cid.12059

    Article  PubMed  Google Scholar 

  60. Liu Y, Bao C, Wismeijer D, Wu G (2015) The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C. 49:323–329. https://doi.org/10.1016/j.msec.2015.01.007

    Article  CAS  Google Scholar 

  61. Lu M, Xu S, Lei Z-X et al (2019) Application of a novel porous tantalum implant in rabbit anterior lumbar spine fusion model. Chin Med J (Engl). 132(1):51–62. https://doi.org/10.1097/CM9.0000000000000030

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, Aronow MS, Gronowicz G (2011) Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res. 29(4):609–616. https://doi.org/10.1002/jor.21251

    Article  PubMed  Google Scholar 

  63. Lee JW, Wen HB, Gubbi P, Romanos GE (2018) New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: a pilot canine study. Clin Oral Implants Res. 29(2):164–174. https://doi.org/10.1111/clr.13074

    Article  PubMed  Google Scholar 

  64. Buehler WJ, Wang FE (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1(1):105–120. https://doi.org/10.1016/0029-8018(68)90019-X

    Article  Google Scholar 

  65. Chu Y, Dai KR, Zhu M, Mi XJ (2000) Medical application of NiTi shape memory alloy in China. Mater Sci Forum. 327-328:55–62. https://doi.org/10.4028/www.scientific.net/MSF.327-328.55

    Article  Google Scholar 

  66. Duerig TW, Pelton AR, Stöckel D (1996) The utility of superelasticity in medicine. Biomed Mater Eng. 6(4):255–266. https://doi.org/10.3233/BME-1996-6404

    Article  CAS  PubMed  Google Scholar 

  67. Vallet-Regí M, Salinas AJ (2019) Ceramics as bone repair materials. Bone Repair Biomater:141–178. https://doi.org/10.1016/B978-0-08-102451-5.00006-8

  68. Arcos D, Izquierdo-Barba I, Vallet-Regí M (2009) Promising trends of bioceramics in the biomaterials field. J Mater Sci Mater Med. 20(2):447–455. https://doi.org/10.1007/s10856-008-3616-x

    Article  CAS  PubMed  Google Scholar 

  69. Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs. 8(3):131–136. https://doi.org/10.1007/s10047-005-0292-1

    Article  CAS  PubMed  Google Scholar 

  70. Rey C (1990) Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials. 11:13–15. https://doi.org/10.1016/0142-9612(90)90045-R

    Article  CAS  PubMed  Google Scholar 

  71. Ramselaar MMA, Driessens FCM, Kalk W, De Wijn JR, Van Mullem PJ (1991) Biodegradation of four calcium phosphate ceramics;in vivo rates and tissue interactions. J Mater Sci Mater Med. 2(2):63–70. https://doi.org/10.1007/BF00703460

    Article  CAS  Google Scholar 

  72. Rapacz-Kmita A, Ślósarczyk A, Paszkiewicz Z (2005) FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J Mol Struct. 744-747:653–656. https://doi.org/10.1016/J.MOLSTRUC.2004.11.070

    Article  CAS  Google Scholar 

  73. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials. 30(12):2175–2179. https://doi.org/10.1016/J.BIOMATERIALS.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  74. Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9(9):8037–8045. https://doi.org/10.1016/J.ACTBIO.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  75. Ogata K, Imazato S, Ehara A et al (2005) Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites. J Biomed Mater Res Part A. 72A(2):127–135. https://doi.org/10.1002/jbm.a.30146

    Article  CAS  Google Scholar 

  76. Douglas T, Pamula E, Hauk D et al (2009) Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J Mater Sci Mater Med. 20(9):1909–1915. https://doi.org/10.1007/s10856-009-3756-7

    Article  CAS  PubMed  Google Scholar 

  77. Guo H, Su J, Wei J, Kong H, Liu C (2009) Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 5(1):268–278. https://doi.org/10.1016/J.ACTBIO.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  78. Capilla MV, Olid MNR, Gaya MVO, Botella CR, Romera CZ (2007) Cylindrical dental implants with hydroxyapatite- and titanium plasma spray–coated surfaces: 5-year results. J Oral Implantol 33(2):59–68. https://doi.org/10.1563/1548-1336(2007)33[59:CDIWHA]2.0.CO;2

    Article  Google Scholar 

  79. Zhou W, Liu Z, Xu S, Hao P, Xu F, Sun A (2011) Long-term survivability of hydroxyapatite-coated implants: a meta-analysis. Oral Surg. 4(1):2–7. https://doi.org/10.1111/j.1752-248X.2010.01112.x

    Article  Google Scholar 

  80. Zhou M, Geng Y, Li S et al (2019) Nanocrystalline hydroxyapatite-based scaffold adsorbs and gives sustained release of osteoinductive growth factor and facilitates bone regeneration in mice ectopic model. J Nanomater. 2019:1–10. https://doi.org/10.1155/2019/1202159

    Article  CAS  Google Scholar 

  81. Ramires PA, Wennerberg A, Johansson CB, Cosentino F, Tundo S, Milella E (2003) Biological behavior of sol-gel coated dental implants. J Mater Sci Mater Med. 14(6):539–545. https://doi.org/10.1023/A:1023412131314

    Article  CAS  PubMed  Google Scholar 

  82. Albrektsson T (1998) Hydroxyapatite-coated implants: a case against their use. J Oral Maxillofac Surg. 56(11):1312–1326. https://doi.org/10.1016/S0278-2391(98)90616-4

    Article  CAS  PubMed  Google Scholar 

  83. de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A (2007) Enhancement ofin vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res Part A. 80A(3):554–564. https://doi.org/10.1002/jbm.a.30955

    Article  CAS  Google Scholar 

  84. Göransson A, Arvidsson A, Currie F et al (2009) An in vitro comparison of possibly bioactive titanium implant surfaces. J Biomed Mater Res Part A. 88A(4):1037–1047. https://doi.org/10.1002/jbm.a.31911

    Article  CAS  Google Scholar 

  85. Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J (2013) Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng Part A. 19(15-16):1723–1732. https://doi.org/10.1089/ten.tea.2013.0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 13(1):40. https://doi.org/10.1186/s12951-015-0099-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dickens B, Schroeder LW, Brown WE (1974) Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J Solid State Chem. 10(3):232–248. https://doi.org/10.1016/0022-4596(74)90030-9

    Article  CAS  Google Scholar 

  88. Mathew M, Schroeder LW, Dickens B, Brown WE (1977) The crystal structure of α-Ca3(PO4)2. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 33(5):1325–1333. https://doi.org/10.1107/S0567740877006037

    Article  Google Scholar 

  89. Horch H-H, Sader R, Pautke C, Neff A, Deppe H, Kolk A (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 35(8):708–713. https://doi.org/10.1016/J.IJOM.2006.03.017

    Article  PubMed  Google Scholar 

  90. Yamada S, Heymann D, Bouler J-M, Daculsi G (1997) Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 18(15):1037–1041. https://doi.org/10.1016/S0142-9612(97)00036-7

    Article  CAS  PubMed  Google Scholar 

  91. Yao C-H, Liu B-S, Hsu S-H, Chen Y-S, Tsai C-C (2004) Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res. 69A(4):709–717. https://doi.org/10.1002/jbm.a.30045

    Article  CAS  Google Scholar 

  92. Liu H, Cai Q, Lian P et al (2010) β-tricalcium phosphate nanoparticles adhered carbon nanofibrous membrane for human osteoblasts cell culture. Mater Lett. 64(6):725–728. https://doi.org/10.1016/J.MATLET.2009.12.050

    Article  CAS  Google Scholar 

  93. Kamitakahara M, Ohtsuki C, Miyazaki T (2008) Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 23(3):197–212. https://doi.org/10.1177/0885328208096798

    Article  CAS  PubMed  Google Scholar 

  94. Bi L, Cheng W, Fan H, Pei G (2010) Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials. 31(12):3201–3211. https://doi.org/10.1016/J.BIOMATERIALS.2010.01.038

    Article  CAS  PubMed  Google Scholar 

  95. Ellinger RF, Nery EB, Lynch KL (1986) Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 6(3):22–33. http://www.ncbi.nlm.nih.gov/pubmed/3015813. Accessed 28 Apr 2019

    CAS  PubMed  Google Scholar 

  96. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 19(16):1473–1478. https://doi.org/10.1016/S0142-9612(98)00061-1

    Article  CAS  PubMed  Google Scholar 

  97. Lobo SE, Livingston Arinzeh T, Lobo SE, Livingston AT (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials (Basel). 3(2):815–826. https://doi.org/10.3390/ma3020815

    Article  CAS  PubMed Central  Google Scholar 

  98. Dorozhkin SV (2012) Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8(3):963–977. https://doi.org/10.1016/J.ACTBIO.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  99. Arinzeh TL, Tran T, Mcalary J, Daculsi G (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 26(17):3631–3638. https://doi.org/10.1016/J.BIOMATERIALS.2004.09.035

    Article  CAS  PubMed  Google Scholar 

  100. Amirian J, Linh NTB, Min YK, Lee B-T (2015) Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Int J Biol Macromol. 76:10–24. https://doi.org/10.1016/J.IJBIOMAC.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  101. Ramay HR, Zhang M (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 25(21):5171–5180. https://doi.org/10.1016/J.BIOMATERIALS.2003.12.023

    Article  CAS  PubMed  Google Scholar 

  102. Scotchford CA, Vickers M, Yousuf Ali S (1995) The isolation and characterization of magnesium whitlockite crystals from human articular cartilage. Osteoarthr Cartil. 3(2):79–94. https://doi.org/10.1016/S1063-4584(05)80041-X

    Article  CAS  PubMed  Google Scholar 

  103. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam. https://www.sciencedirect.com/bookseries/studies-in-inorganic-chemistry/vol/18. Accessed 26 Jul 2019

    Google Scholar 

  104. Jang HL, Lee HK, Jin K, Ahn H-Y, Lee H-E, Nam KT (2015) Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J Mater Chem B. 3(7):1342–1349. https://doi.org/10.1039/C4TB01793E

    Article  CAS  Google Scholar 

  105. Jang HL, Jin K, Lee J et al (2014) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano. 8(1):634–641. https://doi.org/10.1021/nn405246h

    Article  CAS  PubMed  Google Scholar 

  106. Kim HD, Jang HL, Ahn H-Y et al (2017) Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials. 112:31–43. https://doi.org/10.1016/J.BIOMATERIALS.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  107. Jang HL, Bin ZG, Park J et al (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β -tricalcium phosphate. Adv Healthc Mater. 5(1):128–136. https://doi.org/10.1002/adhm.201400824

    Article  CAS  PubMed  Google Scholar 

  108. Cheng PT, Grabher JJ, LeGeros RZ (1988) Effects of magnesium on calcium phosphate formation. Magnesium. 7(3):123–132. http://www.ncbi.nlm.nih.gov/pubmed/2846970. Accessed 29 Apr 2019

    CAS  PubMed  Google Scholar 

  109. Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 175(2):266–276. https://doi.org/10.1016/0014-4827(88)90191-7

    Article  CAS  PubMed  Google Scholar 

  110. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science. 289(5484):1504–1508. https://doi.org/10.1126/SCIENCE.289.5484.1504

    Article  CAS  PubMed  Google Scholar 

  111. Kim H-K, Han H-S, Lee K-S et al (2017) Comprehensive study on the roles of released ions from biodegradable Mg-5 wt% Ca-1 wt% Zn alloy in bone regeneration. J Tissue Eng Regen Med. 11(10):2710–2724. https://doi.org/10.1002/term.2166

    Article  CAS  PubMed  Google Scholar 

  112. Zapanta Le Geros R (1974) Variations in the crystalline components of human dental calculus: i. crystallographic and spectroscopic methods of analysis. J Dent Res. 53(1):45–50. https://doi.org/10.1177/00220345740530012801

    Article  Google Scholar 

  113. Barrère F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 1(3):317–332. http://www.ncbi.nlm.nih.gov/pubmed/17717972. Accessed 29 Apr 2019

    PubMed  PubMed Central  Google Scholar 

  114. Bodier-Houllé P, Steuer P, Voegel J-C, Cuisinier FJG (1998) First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. Acta Crystallogr Sect D Biol Crystallogr. 54(6):1377–1381. https://doi.org/10.1107/S0907444998005769

    Article  Google Scholar 

  115. Suzuki O, Imaizumi H, Kamakura S, Katagiri T (2008) Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem. 15(3):305–313. https://doi.org/10.2174/092986708783497283

    Article  CAS  PubMed  Google Scholar 

  116. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K (2001) Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci Mater Med. 12(6):529–534. https://doi.org/10.1023/A:1011271713758

    Article  PubMed  Google Scholar 

  117. Socol G, Torricelli P, Bracci B et al (2004) Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials. 25(13):2539–2545. https://doi.org/10.1016/J.BIOMATERIALS.2003.09.044

    Article  CAS  PubMed  Google Scholar 

  118. Shelton RM, Liu Y, Cooper PR, Gbureck U, German MJ, Barralet JE (2006) Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 27(14):2874–2881. https://doi.org/10.1016/J.BIOMATERIALS.2005.12.031

    Article  CAS  PubMed  Google Scholar 

  119. Kikawa T, Kashimoto O, Imaizumi H, Kokubun S, Suzuki O (2009) Intramembranous bone tissue response to biodegradable octacalcium phosphate implant. Acta Biomater. 5(5):1756–1766. https://doi.org/10.1016/J.ACTBIO.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  120. Stefanic M, Krnel K, Pribosic I, Kosmac T (2012) Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci. 258(10):4649–4656. https://doi.org/10.1016/J.APSUSC.2012.01.048

    Article  CAS  Google Scholar 

  121. ter Brugge PJ, Wolke JGC, Jansen JA (2003) Effect of calcium phosphate coating composition and crystallinity on the response of osteogenic cells in vitro. Clin Oral Implants Res. 14(4):472–480. https://doi.org/10.1034/j.1600-0501.2003.00886.x

    Article  PubMed  Google Scholar 

  122. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 6(9):3362–3378. https://doi.org/10.1016/J.ACTBIO.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  123. Popp JR, Laflin KE, Love BJ, Goldstein AS (2012) Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds. J Tissue Eng Regen Med. 6(1):12–20. https://doi.org/10.1002/term.390

    Article  CAS  PubMed  Google Scholar 

  124. Cheng H, Chabok R, Guan X et al (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 69:342–351. https://doi.org/10.1016/J.ACTBIO.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 23:4. https://doi.org/10.1186/s40824-018-0149-3

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ishikawa K, Miyamoto Y, Tsuchiya A et al (2018) Physical and histological comparison of hydroxyapatite, carbonate apatite, and β-tricalcium phosphate bone substitutes. Materials (Basel). 11(10):1993. https://doi.org/10.3390/ma11101993

    Article  CAS  PubMed Central  Google Scholar 

  127. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials. 29(20):2941–2953. https://doi.org/10.1016/J.BIOMATERIALS.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  128. Bi L, Rahaman MN, Day DE et al (2013) Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 9(8):8015–8026. https://doi.org/10.1016/j.actbio.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  129. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 62:1–28. https://doi.org/10.1016/j.actbio.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  130. Fu Q (2019) Bioactive glass scaffolds for bone tissue engineering. Biomed Ther Clin Appl Bioact Glas:417–442. https://doi.org/10.1016/B978-0-08-102196-5.00015-X

  131. Moses JC, Nandi SK, Mandal BB (2018) Multifunctional cell instructive silk-bioactive glass composite reinforced scaffolds toward osteoinductive, proangiogenic, and resorbable bone grafts. Adv Healthc Mater. 7(10):1701418. https://doi.org/10.1002/adhm.201701418

    Article  CAS  Google Scholar 

  132. Baino F (2018) Bioactive glasses—when glass science and technology meet regenerative medicine. Ceram Int. 44(13):14953–14966. https://doi.org/10.1016/j.ceramint.2018.05.180

    Article  CAS  Google Scholar 

  133. Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym. 87(1):274–283. https://doi.org/10.1016/j.carbpol.2011.07.058

    Article  CAS  Google Scholar 

  134. Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA (2010) Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev. 16(6):577–585. https://doi.org/10.1089/ten.TEB.2010.0462

    Article  CAS  PubMed  Google Scholar 

  135. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1):4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  136. Zhang G, Brion A, Willemin A-S et al (2017) Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. J Biomed Mater Res Part A. 105(2):662–671. https://doi.org/10.1002/jbm.a.35939

    Article  CAS  Google Scholar 

  137. Akilal N, Lemaire F, Bercu NB et al (2019) Cowries derived aragonite as raw biomaterials for bone regenerative medicine. Mater Sci Eng C. 94:894–900. https://doi.org/10.1016/j.msec.2018.10.039

    Article  CAS  Google Scholar 

  138. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol. 20(2):86–100. https://doi.org/10.1016/j.smim.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  139. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res. 31:81–110. http://www.bioen.utah.edu/faculty/pat/Courses/biomaterials/BiologicalResponse.pdf. Accessed 7 Mar 2017

    Article  CAS  Google Scholar 

  140. Navarro M, Michiardi A, Castano OPA (2008) Biomaterials in orthopaedics. J R Soc Interface. 5:1137–1158

    Article  CAS  Google Scholar 

  141. Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels as intervertebral disc prostheses. In: Science and technology of polymers and advanced materials. Springer US, Boston, MA, pp 547–555. https://doi.org/10.1007/978-1-4899-0112-5_46

    Chapter  Google Scholar 

  142. Hasan A, Byambaa B, Morshed M et al (2018) Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med. 12(6):1448–1468. https://doi.org/10.1002/term.2677

    Article  CAS  PubMed  Google Scholar 

  143. Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 25(10):2445–2461. https://doi.org/10.1007/s10856-014-5240-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci. 2(4):497–502. https://doi.org/10.3934/matersci.2015.4.497

    Article  Google Scholar 

  145. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices. 4(3):405–418. https://doi.org/10.1586/17434440.4.3.405

    Article  CAS  PubMed  Google Scholar 

  146. Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 14(10):1056–1065. https://doi.org/10.1016/J.JOCA.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  147. Marijnissen WJC, van Osch GJV, Aigner J et al (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 23(6):1511–1517. https://doi.org/10.1016/S0142-9612(01)00281-2

    Article  CAS  PubMed  Google Scholar 

  148. Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22(1):81–91. https://doi.org/10.1016/S0945-053X(03)00012-X

    Article  CAS  PubMed  Google Scholar 

  149. Revell PA, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L (2007) Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med. 18(2):303–308. https://doi.org/10.1007/s10856-006-0693-6

    Article  CAS  PubMed  Google Scholar 

  150. Acevedo CA, Olguín Y, Briceño M et al (2019) Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. Mater Sci Eng C. 99:875–886. https://doi.org/10.1016/J.MSEC.2019.01.135

    Article  CAS  Google Scholar 

  151. Ou Q, Miao Y, Yang F, Lin X, Zhang L-M, Wang Y (2019) Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells. Biomater Sci 7(5):1973–1983. https://doi.org/10.1039/c8bm01653d

    Article  CAS  PubMed  Google Scholar 

  152. Cao M, Zhou Y, Mao J et al (2019) Promoting osteogenic differentiation of BMSCs via mineralization of polylactide/gelatin composite fibers in cell culture medium. Mater Sci Eng C. 100:862–873. https://doi.org/10.1016/j.msec.2019.02.079

    Article  CAS  Google Scholar 

  153. Anada T, Pan C-C, Stahl A et al (1096) Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 20(5):2019. https://doi.org/10.3390/ijms20051096

    Article  CAS  Google Scholar 

  154. Ingavle GC, Gionet-Gonzales M, Vorwald CE et al (2019) Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Biomaterials. 197:119–128. https://doi.org/10.1016/j.biomaterials.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  155. Murahashi Y, Yano F, Nakamoto H et al (2019) Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater. 85:172–179. https://doi.org/10.1016/j.actbio.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  156. Lee S-H, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 59(4-5):339–359. https://doi.org/10.1016/J.ADDR.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  157. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147. https://doi.org/10.1016/S0169-409X(01)00245-9

    Article  CAS  PubMed  Google Scholar 

  158. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang X-Q (2018) Bioactive hydrogels for bone regeneration. Bioact Mater. 3(4):401–417. https://doi.org/10.1016/j.bioactmat.2018.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  159. Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci. 108(33):13399–13403. https://doi.org/10.1073/pnas.1104954108

    Article  PubMed  Google Scholar 

  160. Onat B, Tuncer S, Ulusan S, Banerjee S, Erel GI (2019) Biodegradable polymer promotes osteogenic differentiation in immortalized and primary osteoblast-like cells. Biomed Mater. 14(4):045003. https://doi.org/10.1088/1748-605X/ab0e92

    Article  CAS  PubMed  Google Scholar 

  161. Barbieri D, Yuan H, Luo X, Farè S, Grijpma DW, de Bruijn JD (2013) Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomater. 9(12):9401–9413. https://doi.org/10.1016/j.actbio.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  162. Ricciardi BF, Bostrom MP (2013) Bone graft substitutes: claims and credibility. Semin Arthroplasty 24(2):119–123. https://doi.org/10.1053/j.sart.2013.07.002

    Article  Google Scholar 

  163. Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A (2017) Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydr Polym. 166:236–248. https://doi.org/10.1016/j.carbpol.2017.02.087

    Article  CAS  PubMed  Google Scholar 

  164. Lai Y, Li Y, Cao H et al (2019) Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 197:207–219. https://doi.org/10.1016/j.biomaterials.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  165. Veronesi F, Giavaresi G, Guarino V et al (2015) Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. J Biomed Mater Res Part A. 103(9):2932–2941. https://doi.org/10.1002/jbm.a.35433

    Article  CAS  Google Scholar 

  166. Martínez-Sanmiguel JJ, Zarate-Triviño G, Hernandez-Delgadillo R et al (2019) Anti-inflammatory and antimicrobial activity of bioactive hydroxyapatite/silver nanocomposites. J Biomater Appl 33(10):1314–1326. https://doi.org/10.1177/0885328219835995

    Article  CAS  PubMed  Google Scholar 

  167. Chen Y, Zheng Z, Zhou R et al (2019) Developing a strontium-releasing graphene oxide/collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Appl Mater Interfaces 11(17):15986–15997. https://doi.org/10.1021/acsami.8b22606

    Article  CAS  PubMed  Google Scholar 

  168. Arnold AM, Holt BD, Daneshmandi L, Laurencin CT, Sydlik SA (2019) Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A 116(11):4855–4860. https://doi.org/10.1073/pnas.1815434116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Narimani M, Teimouri A, Shahbazarab Z (2019) Synthesis, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application. Polym Bull. 76(2):725–745. https://doi.org/10.1007/s00289-018-2390-2

    Article  CAS  Google Scholar 

  170. Wang W, Junior JRP, Nalesso PRL et al (2019) Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Mater Sci Eng C. 100:759–770. https://doi.org/10.1016/J.MSEC.2019.03.047

    Article  CAS  Google Scholar 

  171. Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol. 133:592–602. https://doi.org/10.1016/J.IJBIOMAC.2019.04.113

    Article  CAS  PubMed  Google Scholar 

  172. Zhang Y, Wang J, Wang J et al (2015) Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect. Cell Tissue Bank. 16(4):615–622. https://doi.org/10.1007/s10561-015-9510-0

    Article  CAS  PubMed  Google Scholar 

  173. Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater. 6(1):29–37. https://doi.org/10.1093/rb/rby024

    Article  CAS  PubMed  Google Scholar 

  174. Li X, Wang L, Fan Y, Feng Q, Cui F-Z, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res Part A. 101A(8):2424–2435. https://doi.org/10.1002/jbm.a.34539

    Article  CAS  Google Scholar 

  175. Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chemie Int Ed. 48(30):5406–5415. https://doi.org/10.1002/anie.200805179

    Article  CAS  Google Scholar 

  176. Peng R, Yao X, Ding J (2011) Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials. 32(32):8048–8057. https://doi.org/10.1016/j.biomaterials.2011.07.035

    Article  CAS  PubMed  Google Scholar 

  177. McMahon RE, Wang L, Skoracki R, Mathur AB (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res Part B Appl Biomater. 101B(2):387–397. https://doi.org/10.1002/jbm.b.32823

    Article  CAS  Google Scholar 

  178. Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R (2014) Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res Part A. 102(5):1568–1579. https://doi.org/10.1002/jbm.a.34810

    Article  CAS  Google Scholar 

  179. Gelinsky M, Welzel PB, Simon P, Bernhardt A, König U (2008) Porous three-dimensional scaffolds made of mineralised collagen: Preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem Eng J. 137(1):84–96. https://doi.org/10.1016/J.CEJ.2007.09.029

    Article  CAS  Google Scholar 

  180. Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci. 107(11):4872–4877. https://doi.org/10.1073/pnas.0903269107

    Article  PubMed  Google Scholar 

  181. Watari S, Hayashi K, Wood JA et al (2012) Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials. 33(1):128–136. https://doi.org/10.1016/j.biomaterials.2011.09.058

    Article  CAS  PubMed  Google Scholar 

  182. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD (2006) Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surfaces B Biointerfaces. 50:1–8. https://doi.org/10.1016/j.colsurfb.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  183. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 108(11):4754–4783. https://doi.org/10.1021/cr8004422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dalby MJ, Gadegaard N, Tare R et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003. https://doi.org/10.1038/nmat2013

    Article  CAS  PubMed  Google Scholar 

  185. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res. 3:15029. https://doi.org/10.1038/boneres.2015.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Vallet-Regí M, Salinas AJ (2009) Ceramics as bone repair materials. 2nd. Elsevier, Amsterdam. https://doi.org/10.1533/9781845696610.2.194

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, S., Srivastava, R. (2020). Osteoinductive and Osteoconductive Biomaterials. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_15

Download citation

Publish with us

Policies and ethics