Skip to main content

Anti-biofouling and Antimicrobial Biomaterials for Tissue Engineering

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Biofouling from nonspecific protein adsorption and microorganism adhesion is a continuous challenge in numerous biomedical applications such as implants, biosensors, and tissue-engineered scaffolds. The bacteria attached to the biomaterial surface can encapsulate themselves within a protective extracellular polymeric layer, leading to the formation of biofilm that is difficult to combat or eliminate. A promising strategy to prevent device-related infections is the development of new biomaterials that are anti-biofouling and/or antimicrobial. In general, anti-biofouling materials exhibit low adhesion or resistance properties towards a variety of bacteria, while antimicrobial ones can kill microorganisms approaching the surfaces or in the surrounding areas. In this chapter, we briefly introduce the recent strategies in the design and applications of anti-biofouling and antimicrobial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francolini I, Vuotto C, Piozzi A, Donelli G (2017) Antifouling and antimicrobial biomaterials: an overview. APMIS 125(4):392–417

    Article  PubMed  Google Scholar 

  2. Riga EK, Vohringer M, Widyaya VT, Lienkamp K (2017) Polymer-based surfaces designed to reduce biofilm formation: from antimicrobial polymers to strategies for long-term applications. Macromol Rapid Commun 38(20)

    Google Scholar 

  3. Kim M, Lee S, Park HD, Choi SI, Hong S (2012) Biofouling control by quorum sensing inhibition and its dependence on membrane surface. Water Sci Technol 66(7):1424–1430

    Article  CAS  PubMed  Google Scholar 

  4. Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67(1):43–63

    Article  CAS  PubMed  Google Scholar 

  5. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio 9(3)

    Google Scholar 

  6. Zhang YF, Shi WY, Song YQ, Wang JF (2019) Metatranscriptomic analysis of an in vitro biofilm model reveals strain-specific interactions among multiple bacterial species. J Oral Microbiol 11(1):1599670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diaz C, Minan A, Schilardi PL, de Mele MFL (2012) Synergistic antimicrobial effect against early biofilm formation: micropatterned surface plus antibiotic treatment. Int J Antimicrob Agents 40(3):221–226

    Article  CAS  PubMed  Google Scholar 

  8. Chen SF, Li LY, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23):5283–5293

    Article  CAS  Google Scholar 

  9. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17(20):6336–6343

    Article  CAS  Google Scholar 

  10. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19(7–9):851–859

    Article  CAS  PubMed  Google Scholar 

  11. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19(17):6912–6921

    Article  CAS  Google Scholar 

  12. Razatos A, Ong YL, Boulay F, Elbert DL, Hubbell JA, Sharma MM, Georgiou G (2000) Force measurements between bacteria and poly(ethylene glycol)-coated surfaces. Langmuir 16(24):9155–9158

    Article  CAS  Google Scholar 

  13. Kenan DJ, Walsh EB, Meyers SR, O’Toole GA, Carruthers EG, Lee WK, Zauscher S, Prata CAH, Grinstaff MW (2006) Peptide-PEG amphiphiles as cytophobic coatings for mammalian and bacterial cells. Chem Biol 13(7):695–700

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez ICS, van der Mei HC, Lochhead MJ, Grainger DW, Busscher HJ (2007) The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials 28(28):4105–4112

    Article  CAS  Google Scholar 

  15. Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20(25):10949–10955

    Article  CAS  PubMed  Google Scholar 

  16. Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science (New York, NY) 252(5009):1164–1167

    Article  CAS  Google Scholar 

  17. Tegoulia VA, Cooper SL (2002) Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence. Colloids Surf B Biointerfaces 24(3):217–228

    Article  CAS  Google Scholar 

  18. Zhang P, Sun F, Liu S, Jiang S (2016) Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244(Pt B):184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter AW, Akerblom E (1983) Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int Arch Allergy Appl Immunol 70(2):124–131

    Article  CAS  PubMed  Google Scholar 

  20. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P (2012) Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 9(11):1319–1323

    Article  CAS  PubMed  Google Scholar 

  21. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G (2007) Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110(1):103–111

    Article  PubMed  Google Scholar 

  22. Hershfield MS, Ganson NJ, Kelly SJ, Scarlett EL, Jaggers DA, Sundy JS (2014) Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther 16(2):R63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Longo N, Harding CO, Burton BK, Grange DK, Vockley J, Wasserstein M, Rice GM, Dorenbaum A, Neuenburg JK, Musson DG, Gu Z, Sile S (2014) Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial. Lancet 384(9937):37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowe S, O’Brien-Simpson NM, Connal LA (2015) Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym Chem 6(2):198–212

    Article  CAS  Google Scholar 

  25. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28):5234–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao B, Li L, Tang Q, Cheng G (2013) The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials 34(31):7592–7600

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu T, Goda T, Minoura N, Takai M, Ishihara K (2010) Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 31(12):3274–3280

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner BD, Jiang S (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31(6):553–556

    Article  CAS  PubMed  Google Scholar 

  30. Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ (2017) Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomater Sci 5(6):1072–1081

    Article  CAS  PubMed  Google Scholar 

  31. Zhu Y, Zhang J, Song J, Yang J, Xu T, Pan C, Zhang L (2017) One-step synthesis of an antibacterial and pro-healing wound dressing that can treat wound infections. J Mater Chem B 5(43):8451–8458

    Article  CAS  PubMed  Google Scholar 

  32. Yang W, Zhang L, Wang S, White AD, Jiang S (2009) Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 30(29):5617–5621

    Article  CAS  PubMed  Google Scholar 

  33. Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7):6748–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Liu S, Bai T, Keefe AJ, Zhang L, Ella-Menye J-R, Li Y, Jiang S (2014) Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today 9(1):10–16

    Article  CAS  Google Scholar 

  35. Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S (2010) Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-L-alanine linkages. Biomaterials 31(25):6582–6588

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Lin W, Chen S, Xu H, Gu H (2011) Development of a stable dual functional coating with low non-specific protein adsorption and high sensitivity for new superparamagnetic nanospheres. Langmuir 27(22):13669–13674

    Article  CAS  PubMed  Google Scholar 

  37. Giovanelli E, Muro E, Sitbon G, Hanafi M, Pons T, Dubertret B, Lequeux N (2012) Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging. Langmuir 28(43):15177–15184

    Article  CAS  PubMed  Google Scholar 

  38. Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B (2010) Small and stable Sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J Am Chem Soc 132(13):4556–4557

    Article  CAS  PubMed  Google Scholar 

  39. Jia G, Cao Z, Xue H, Xu Y, Jiang S (2009) Novel zwitterionic-polymer-coated silica nanoparticles. Langmuir 25(5):3196–3199

    Article  CAS  PubMed  Google Scholar 

  40. Shah SR, Kasper FK, Mikos AG (2013) Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. Chin Sci Bull 58(35):4342–4348

    Article  Google Scholar 

  41. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    Article  CAS  PubMed  Google Scholar 

  42. Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao JY (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59(3):438–449

    Article  CAS  PubMed  Google Scholar 

  43. Norowski PA Jr, Bumgardner JD (2009) Biomaterial and antibiotic strategies for peri-implantitis. J Biomed Mater Res B-Appl Biomater 88B(2):530–543

    Article  CAS  Google Scholar 

  44. Shi M, Kretlow JD, Nguyen A, Young S, Baggett LS, Wong ME, Kasper FK, Mikos AG (2010) Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials 31(14):4146–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28):285604

    Article  CAS  Google Scholar 

  46. Back DA, Bormann N, Calafi A, Zech J, Garbe LA, Muller M, Willy C, Schmidmaier G, Wildemann B (2016) Testing of antibiotic releasing implant coatings to fight bacteria in combat-associated osteomyelitis—an in-vitro study. Int Orthop 40(5):1039–1047

    Article  PubMed  Google Scholar 

  47. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  PubMed  Google Scholar 

  48. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54(10):4208–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40(4):257–262

    Article  CAS  PubMed  Google Scholar 

  50. Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  51. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  PubMed  Google Scholar 

  52. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2009) Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels: highly efficient antibacterial nanocomposites. J Appl Polym Sci 111(2):934–944

    CAS  Google Scholar 

  53. Ho CH, Odermatt EK, Berndt I, Tiller JC (2013) Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. J Biomater Sci Polym Ed 24(13):1589–1600

    Article  CAS  PubMed  Google Scholar 

  54. Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14):2081–2088

    Article  CAS  PubMed  Google Scholar 

  55. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28(32):4870–4879

    Article  CAS  PubMed  Google Scholar 

  56. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A 98(11):5981–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39(5):381–389

    Article  CAS  PubMed  Google Scholar 

  58. Frost MC, Reynolds MM, Meyerhoff ME (2005) Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contactincy medical devices. Biomaterials 26(14):1685–1693

    Article  CAS  PubMed  Google Scholar 

  59. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH (2005) Inhibition of implant-associated infections via nitric oxide release. Biomaterials 26(34):6984–6990

    Article  CAS  PubMed  Google Scholar 

  60. Engelsman AF, Krom BP, Busscher HJ, van Dam GM, Ploeg RJ, van der Mei HC (2009) Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater 5(6):1905–1910

    Article  CAS  PubMed  Google Scholar 

  61. Riccio DA, Coneski PN, Nichols SP, Broadnax AD, Schoenfisch MH (2012) Photoinitiated nitric oxide-releasing tertiary S-nitrosothiol-modified xerogels. ACS Appl Mater Interfaces 4(2):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu XF, Guan YL, Yang DZ, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335

    Article  CAS  Google Scholar 

  63. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  CAS  PubMed  Google Scholar 

  64. Popelka A, Novak I, Lehocky M, Junkar I, Mozetic M, Kleinova A, Janigova I, Slouf M, Bilek F, Chodak I (2012) A new route for chitosan immobilization onto polyethylene surface. Carbohydr Polym 90(4):1501–1508

    Article  CAS  PubMed  Google Scholar 

  65. Barros J, Dias A, Rodrigues MA, Pina-Vaz C, Lopes MA, Pina-Vaz I (2015) Antibiofilm and antimicrobial activity of polyethylenimine: an interesting compound for endodontic treatment. J Contemp Dent Pract 16(6):427–432

    Article  PubMed  Google Scholar 

  66. Kim YH, Park JH, Lee M, Kim YH, Park TG, Kim SW (2005) Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 103(1):209–219

    Article  CAS  PubMed  Google Scholar 

  67. Lee Y, Mo H, Koo H, Park J-Y, Cho MY, Jin G-w, Park J-S (2007) Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem 18(1):13–18

    Article  CAS  PubMed  Google Scholar 

  68. Park D, Wang J, Klibanov AM (2006) One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol Prog 22(2):584–589

    Article  CAS  PubMed  Google Scholar 

  69. Hsu BB, Ouyang J, Wong SY, Hammond PT, Klibanov AM (2011) On structural damage incurred by bacteria upon exposure to hydrophobic polycationic coatings. Biotechnol Lett 33(2):411–416

    Article  CAS  PubMed  Google Scholar 

  70. Schaer TP, Stewart S, Hsu BB, Klibanov AM (2012) Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials 33(5):1245–1254

    Article  CAS  PubMed  Google Scholar 

  71. Milovic NM, Wang J, Lewis K, Klibanov AM (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90(6):715–722

    Article  CAS  PubMed  Google Scholar 

  72. Gultekinoglu M, Tunc Sarisozen Y, Erdogdu C, Sagiroglu M, Aksoy EA, Oh YJ, Hinterdorfer P, Ulubayram K (2015) Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomater 21:44–54

    Article  CAS  PubMed  Google Scholar 

  73. Zanini S, Polissi A, Maccagni EA, Dell’Orto EC, Liberatore C, Riccardi C (2015) Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters. J Colloid Interface Sci 451:78–84

    Article  CAS  PubMed  Google Scholar 

  74. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on Ag/Graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 24(25):3933–3943

    Article  CAS  Google Scholar 

  75. Nimal TR, Baranwal G, Bavya MC, Biswas R, Jayakumar R (2016) Anti-staphylococcal activity of injectable nano Tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl Mater Interfaces 8(34):22074–22083

    Article  CAS  PubMed  Google Scholar 

  76. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101

    Article  CAS  PubMed  Google Scholar 

  77. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  CAS  PubMed  Google Scholar 

  78. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8(14):7533–7549

    Article  CAS  Google Scholar 

  79. El-Naggar MY, Gohar YM, Sorour MA, Waheeb MG (2016) Hydrogel dressing with a nano-formula against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa diabetic foot bacteria. J Microbiol Biotechnol 26(2):408–420

    Article  CAS  PubMed  Google Scholar 

  80. Yu BY, Zheng J, Chang Y, Sin MC, Chang CH, Higuchi A, Sun YM (2014) Surface zwitterionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir 30(25):7502–7012

    Article  CAS  PubMed  Google Scholar 

  81. Sin MC, Sun YM, Chang Y (2014) Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS Appl Mater Interfaces 6(2):861–873

    Article  CAS  PubMed  Google Scholar 

  82. Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S, Fierro JLG, Hueso JL, Vallet-Regí MA (2010) Synthesis and characterization of zwitterionic SBA-15 nanostructured materials. Chem Mater 22(23):6459–6466

    Article  CAS  Google Scholar 

  83. Colilla M, Martínez-Carmona M, Sánchez-Salcedo S, Ruiz-González ML, González-Calbet JM, Vallet-Regí M (2014) A novel zwitterionic bioceramic with dual antibacterial capability. J Mater Chem B 2(34):5639–5651

    Article  CAS  PubMed  Google Scholar 

  84. Izquierdo-Barba I, Sanchez-Salcedo S, Colilla M, Feito MJ, Ramirez-Santillan C, Portoles MT, Vallet-Regi M (2011) Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomater 7(7):2977–2985

    Article  CAS  PubMed  Google Scholar 

  85. Liu P, Domingue E, Ayers DC, Song J (2014) Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization. ACS Appl Mater Interfaces 6(10):7141–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23(supp-S1):75–78

    Article  CAS  Google Scholar 

  87. Johnson JR, Johnston B, Kuskowski MA (2012) In vitro comparison of Nitrofurazone- and silver alloy-coated Foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms. Antimicrob Agents Chemother 56(9):4969–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pickard R, Lam T, MacLennan G, Starr K, Kilonzo M, McPherson G, Gillies K, McDonald A, Walton K, Buckley B, Glazener C, Boachie C, Burr J, Norrie J, Vale L, Grant A, N’Dow J (2012) Types of urethral catheter for reducing symptomatic urinary tract infections in hospitalised adults requiring short-term catheterisation: multicentre randomised controlled trial and economic evaluation of antimicrobial- and antiseptic-impregnated urethral catheters (the CATHETER trial). Health Technol Assess 16(47):1–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pollini M, Paladini F, Catalano M, Taurino A, Licciulli A, Maffezzoli A, Sannino A (2011) Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci Mater Med 22(9):2005–2012

    Article  CAS  PubMed  Google Scholar 

  90. Dayyoub E, Frant M, Pinnapireddy SR, Liefeith K, Bakowsky U (2017) Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm 531(1):205–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is partially supported by funds from the National Natural Science Funds for Innovation Research Groups 21621004, the Qingdao National Laboratory for Marine Science and Technology, QNLM2016ORP0407, National Natural Science Funds for Excellent Young Scholars 21422605, and Tianjin Natural Science Foundation 18JCYB- JC29500. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Ke, J., Zhang, L. (2020). Anti-biofouling and Antimicrobial Biomaterials for Tissue Engineering. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_14

Download citation

Publish with us

Policies and ethics