Skip to main content

Additive Manufacturing of Bioscaffolds for Bone Regeneration

  • Chapter
  • First Online:
Racing for the Surface
  • 1315 Accesses

Abstract

As technology and computer applications reach new strides every day, the biomedical field is benefiting from this advancement and that includes the production of bioscaffolds for tissue engineering and bone regeneration. Even though the body is capable of healing minor injuries, some injuries might prove too challenging for the body to repair and that is where additive manufacturing (AM) comes in. This chapter discusses the primary materials as well as the major and mainstream methods used in AM of bioscaffolds for bone regeneration. In addition, new advancements in Computer-Aided Design (CAD) and three-Dimensional (3D) designs in AM are addressed. The benefits and drawbacks of different methods used in AM for bone scaffolds and their suitability for human trials and further applications on patients are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurencin C, Khan Y, El-Amin S (2006) Bone graft substitutes. Expert Rev Med Devices 3(1):49–57

    Article  CAS  PubMed  Google Scholar 

  2. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DWJBr (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RNJJ (2001) Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 83:98–103

    Article  PubMed  Google Scholar 

  4. Porter B, Oldham J, He S, Zobitz M, Payne R, An K, Currier B, Mikos A, Yaszemski MJ (2000) Mechanical properties of a biodegradable bone regeneration scaffold. J Biomech Eng 122(3):286–288

    Article  CAS  PubMed  Google Scholar 

  5. Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3(2):23–24

    Article  Google Scholar 

  6. Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183(1):1–44

    Article  PubMed  Google Scholar 

  7. Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  CAS  PubMed  Google Scholar 

  8. Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11–12):1055–1061

    Article  CAS  PubMed  Google Scholar 

  10. Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop Relat Res (263):30–48

    Google Scholar 

  11. Jones G, Nguyen T, Sambrook P, Kelly P, Eisman JJB (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309(6956):691–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  PubMed  Google Scholar 

  13. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33(4):349–351

    Article  CAS  PubMed  Google Scholar 

  14. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170(2):427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092(1):385–396

    Article  CAS  PubMed  Google Scholar 

  16. Mueller BJ (2012) Additive manufacturing technologies–rapid prototyping to direct digital manufacturing. Assemb Autom 32(2)

    Google Scholar 

  17. Wohlers T, Gornet T (2014) History of additive manufacturing. In: Wohlers report 2014—3D printing and additive manufacturing state of the industry, vol 24. Cambridge University Press, Cambridge, p 118

    Google Scholar 

  18. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:208760

    Article  Google Scholar 

  19. Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 89(5):574–580

    Article  CAS  PubMed  Google Scholar 

  20. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Google Scholar 

  21. Yavari SA, van der Stok J, Chai YC, Wauthle R, Birgani ZT, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AAJB (2014) Bone regeneration performance of surface-treated porous titanium. Biomaterials 35(24):6172–6181

    Google Scholar 

  22. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Article  CAS  PubMed  Google Scholar 

  23. Hu Q, Yang H, Yao Y (2007) A software method to model and fabricate the defective bone repair bioscaffold using in tissue engineering. In: International conference on life system modeling and simulation. Springer, New York, pp 445–452

    Chapter  Google Scholar 

  24. Ducheyne P, Qiu QJB (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24):2287–2303

    Article  CAS  PubMed  Google Scholar 

  25. Vallet-Regí M, Ruiz-Hernández EJAM (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23(44):5177–5218

    Article  CAS  PubMed  Google Scholar 

  26. Cooper D, Matyas J, Katzenberg M, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74(5):437–447

    Article  CAS  PubMed  Google Scholar 

  27. Ginebra M (2008) Calcium phosphate bone cements. Orthopaedic bone cements. Elsevier, Amsterdam, pp 206–230

    Book  Google Scholar 

  28. Yuan H, Kurashina K, de Bruijn JD, Li Y, De Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20(19):1799–1806

    Article  CAS  PubMed  Google Scholar 

  29. Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32(1–2):1–31

    Article  CAS  Google Scholar 

  30. Anselme KJB (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681

    Article  CAS  PubMed  Google Scholar 

  31. Hench LL, Splinter RJ, Allen W, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141

    Article  Google Scholar 

  32. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Ghannam A, Ducheyne P, Shapiro M (1999) Effect of serum proteins on osteoblast adhesion to surface‐modified bioactive glass and hydroxyapatite. J Orthop Res 17(3):340–345

    Article  CAS  PubMed  Google Scholar 

  34. Gotman I (1997) Characteristics of metals used in implants. J Endourol 11(6):383–389

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  CAS  PubMed  Google Scholar 

  36. Hermawan H (2012) Biodegradable metals: state of the art. Biodegradable metals. Springer, Berlin, pp 13–22

    Book  Google Scholar 

  37. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27(28):4955–4962

    Article  CAS  PubMed  Google Scholar 

  38. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, Tillmann W, Vogt C, Vano K, Witte F (2013) In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater 9(10):8611–8623

    Article  CAS  PubMed  Google Scholar 

  40. Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  CAS  PubMed  Google Scholar 

  41. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17(1):71–82

    Article  CAS  PubMed  Google Scholar 

  42. Andriano K, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48(5):602–612

    Article  CAS  PubMed  Google Scholar 

  43. Muggli DS, Burkoth AK, Keyser SA, Lee HR, Anseth KS (1998) Reaction behavior of biodegradable, photo-cross-linkable polyanhydrides. Macromolecules 31(13):4120–4125

    Article  CAS  Google Scholar 

  44. Hélary G, Noirclère F, Mayingi J, Migonney V (2009) A new approach to graft bioactive polymer on titanium implants: improvement of MG 63 cell differentiation onto this coating. Acta Biomater 5(1):124–133

    Article  CAS  PubMed  Google Scholar 

  45. Oughlis S, Lessim S, Changotade S, Poirier F, Bollotte F, Peltzer J, Felgueiras H, Migonney V, Lataillade JJ, Lutomski D (2013) The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. J Biomed Mater Res A 101(2):582–589

    Article  CAS  PubMed  Google Scholar 

  46. Zorn G, Baio JE, Weidner T, Migonney V, Castner DG (2011) Characterization of poly(sodium styrene sulfonate) thin films grafted from functionalized titanium surfaces. Langmuir 27(21):13104–13112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geng F, Tan LL, Jin XX, Yang JY, Yang K (2009) The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J Mater Sci Mater Med 20(5):1149–1157

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, Mao X, Tan L, Friis T, Wu C, Crawford R, Xiao Y (2014) Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials 35(30):8553–8565

    Article  CAS  PubMed  Google Scholar 

  49. Jasmawati N, Fatihhi S, Putra A, Syahrom A, Harun M, Öchsner A, Kadir MRA (2017) Mg-based porous metals as cancellous bone analogous material: a review. Proc Inst Mech Eng Part L: J Mater Des Appl 231(6):544–556

    CAS  Google Scholar 

  50. Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190

    Article  CAS  PubMed  Google Scholar 

  51. Holck DE, Boyd EM Jr, Ng J, Mauffray RO (1999) Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6):1214–1218

    Article  CAS  PubMed  Google Scholar 

  52. Arcaute K, Mann B, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34(9):1429–1441

    Article  PubMed  Google Scholar 

  53. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA (2015) A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16(3):033502

    Google Scholar 

  54. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 85(2):573–582

    Article  CAS  PubMed  Google Scholar 

  55. Cruz F, Simoes J, Coole T, Bocking C (2005) Direct manufacture of hydroxyapatite based bone implants by selective laser sintering. In: Proceedings of the VRAP 2005, Leiria, Portugal, pp 119–126

    Google Scholar 

  56. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das SJB (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  PubMed  Google Scholar 

  57. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW et al (2010) Acta Biomater 6(12):4495–4505

    Article  CAS  PubMed  Google Scholar 

  58. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  60. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  CAS  PubMed  Google Scholar 

  61. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620

    Article  CAS  Google Scholar 

  62. Stępien E (2011) Acceleration of new biomarkers development and discovery in synergistic diagnostics of coronary artery disease. In: Coronary angiography—advances in noninvasive imaging approach for evaluation of coronary artery disease. InTech, London

    Google Scholar 

  63. Rosy Setiawati PR (2018) Bone development and growth. IntechOpen, London

    Google Scholar 

  64. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Z, Siklos M, Pucher N, Cicha K, Ajami A, Husinsky W, Rosspeintner A, Vauthey E, Gescheidt G, Stampfl J, Liska R (2011) Synthesis and structure-activity relationship of several aromatic ketone-based two-photon initiators. J Polym Sci A 49(17):3688–3699

    Article  CAS  Google Scholar 

  66. Torgersen J (2013) Novel Biocompatible Materials for in Vivo Two-Photon Polymerisation. Technische Universität Wien, Wien

    Google Scholar 

  67. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ (2007) Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol 4(1):22–29

    Article  CAS  Google Scholar 

  68. Medical: FHC—EOS technology for manufacturing of stereotactic platforms for neurosurgery. Accessed 2 Mar 2019

    Google Scholar 

  69. Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281

    Article  CAS  PubMed  Google Scholar 

  70. Baino F, Hamzehlou S, Kargozar S (2018) Bioactive glasses: where are we and where are we going? J Funct Biomater 9(1):25

    Article  CAS  PubMed Central  Google Scholar 

  71. Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, Hernandez DH, Martinez L, Lopez MI, Wicker RB, Bracke J (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci 368(1917):1999–2032

    Article  CAS  PubMed  Google Scholar 

  72. Wong KC, Kumta SM, Geel NV, Demol J (2015) One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20(1):14–23

    Article  CAS  PubMed  Google Scholar 

  73. enbin Luo LH, He L, Wenrui Q, Zhao X, Wang C, Li C, Tao Y, Han Q, Wang J, Qin Y (2017) Customized knee prosthesis in treatment of giant cell tumors of the proximal tibia: application of 3-dimensional printing technology in surgical design. Med Sci Monit 23:1691–1700

    Article  PubMed  Google Scholar 

  74. Gao C, Wang C, Jin H, Wang Z, Li Z, Shi C, Leng Y, Yang F, Liu H, Wang J (2018) Additive manufacturing techniques designed metallic porous implant for clinical application in orthopedics. RSC Adv 8(44)

    Google Scholar 

  75. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M (2018) Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. Int J Mol Sci 19(11):3308

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irsalan Cockerill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almayyahi, O., Cockerill, I., Zheng, Y., Zhu, D. (2020). Additive Manufacturing of Bioscaffolds for Bone Regeneration. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_13

Download citation

Publish with us

Policies and ethics