Skip to main content

Biofabrication in Tissue Engineering

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Biofabrication has been extensively explored in tissue engineering over the past two decades. It uses bioactive materials and live cells as the building blocks to create spatially defined geometries. The goal of biofabrication is to create engineered tissue constructs to replace damaged or diseased human tissues with full functionality. The advantage is that it can rapidly fabricate tissue constructs to meet customized needs. The biomaterials used for biofabrication are called bioinks and usually comprise hydrogel precursor solutions or biocompatible thermal plastics. In this review, we review the commonly used biofabrication methods and critical aspects for creating scaffolds for tissue regeneration. We discuss the criteria for developing and selecting suitable biomaterials as the bioinks. Commonly used biomaterials and their applications are summarized to present the versatility of biofabrication. We also aim to highlight the challenges of this technology and initiate new ideas and opportunities in the future developments in the bioprinting approach and bioinks. The refinement in fabrication techniques, exploration in biology, and development in new bioinks are essential elements toward the advancement of biofabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng 3:141–159

    Google Scholar 

  3. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  4. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112

    Article  CAS  PubMed  Google Scholar 

  5. Truby RL, Lewis JA (2016) Printing soft matter in three dimensions. Nature 540(7633):371–378

    Article  CAS  PubMed  Google Scholar 

  6. Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  PubMed  Google Scholar 

  7. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1)

    Google Scholar 

  8. Liu X et al (2018) 3D printing of living responsive materials and devices. Adv Mater 30(4)

    Google Scholar 

  9. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang T, Munguia-lopez JG, Flores-torres S, Grant J, De Leon-rodriguez A, Kinsella JM (2017) Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate / gelatin hydrogels. Sci Rep 7(1):4575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pedde RD et al (2017) Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 29(19):1–27

    Article  CAS  Google Scholar 

  12. Kang H, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  CAS  PubMed  Google Scholar 

  13. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–139

    Article  CAS  PubMed  Google Scholar 

  14. Koch L, Gruene M, Unger C, Chichkov B (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14:91–97

    CAS  PubMed  Google Scholar 

  15. Visser J et al (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5(3):035007

    Article  CAS  PubMed  Google Scholar 

  16. de Ruijter M et al Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites. Small 1702773:2017

    Google Scholar 

  17. O’Bryan CS et al (2017) Self-assembled micro-organogels for 3D printing silicone structures. Sci Adv 5:3

    Google Scholar 

  18. Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Article  CAS  PubMed  Google Scholar 

  19. Xu T et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(18):3580–3588

    CAS  PubMed  Google Scholar 

  20. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51(10):2147–2154

    Article  CAS  Google Scholar 

  22. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Article  CAS  PubMed  Google Scholar 

  23. Abbadessa A et al (2016) A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromolecules 17:2137–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hornick J (2017) 3D printing in healthcare. J 3D Print Med 1(1):13–17

    Article  Google Scholar 

  27. Hinton TJ et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9):e1500758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ouyang L, Highley CB, Sun W, Burdick JA (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29(8)

    Google Scholar 

  29. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  30. Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 8(3):035003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colosi C et al (2016) Microfluidic bioprinting of heterogeneous 3d tissue constructs using low-viscosity bioink. Adv Mater 28:677–684

    Article  CAS  PubMed  Google Scholar 

  32. Liu W et al (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29(3)

    Google Scholar 

  33. Ribeiro A et al (2018) Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication 10(1):014102

    Article  CAS  Google Scholar 

  34. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333

    Article  CAS  PubMed  Google Scholar 

  35. Suntornnond R, Tan EYS, An J, Chua CK (2016) A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks. Materials 9(9)

    Google Scholar 

  36. Jin Y, Chai W, Huang Y (2017) Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Mater Sci Eng C 80:313–325

    Article  CAS  Google Scholar 

  37. Yuk H, Zhao X (2018) A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater 30(6)

    Google Scholar 

  38. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  39. Liu S, Reneker DH (2019) Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer 168:155–158

    Article  CAS  Google Scholar 

  40. Visser J et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:1–10

    Article  CAS  Google Scholar 

  41. Jiang T, Munguia-lopez JG, Flores-torres S, Kort-mascort J, Kinsella JM Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication. Appl Phys Rev 6(1):011310, 2019

    Google Scholar 

  42. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hubbell JA, West JL (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244

    Article  Google Scholar 

  44. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Monette A, Ceccaldi C, Assaad E, Lerouge S, Lapointe R (2016) Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75:237–249

    Article  CAS  PubMed  Google Scholar 

  46. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  CAS  PubMed  Google Scholar 

  47. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239

    Article  CAS  PubMed  Google Scholar 

  48. Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1–8

    Article  CAS  Google Scholar 

  49. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  50. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Lin L, Cheng Q, Jiang L (2012) A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew Chem Int Ed 51(19):4676–4680

    Article  CAS  Google Scholar 

  52. Jin R et al (2010) Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977

    Article  CAS  PubMed  Google Scholar 

  53. Chen D, et al. Drilling by light: ice-templated photo-patterning enabled by a dynamically crosslinked hydrogel. Materials Horizons; 2019.

    Google Scholar 

  54. Hou J, Li C, Guan Y, Zhang Y, Zhu XX (2015) Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem 6(12):2204–2213

    Article  CAS  Google Scholar 

  55. Kular JK, Basu S, Sharma RI (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:1–17

    Article  Google Scholar 

  56. Wen JH et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13(10):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khetan S, Burdick JA (2010) Biomaterials patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31(32):8228–8234

    Article  CAS  PubMed  Google Scholar 

  58. Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334

    Article  CAS  PubMed  Google Scholar 

  59. Zhao X, Huebsch N, Mooney DJ, Suo Z (2010) Stress-relaxation behavior in gels with ionic and covalent crosslinks. J Appl Phys 107(6)

    Google Scholar 

  60. Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222

    Article  CAS  PubMed  Google Scholar 

  61. Chiu YC et al (2011) The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32(26):6045–6051

    Article  CAS  PubMed  Google Scholar 

  62. Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671

    Article  CAS  PubMed  Google Scholar 

  63. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86(3):933–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ying G-L et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):e1805460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deshayes S, Kasko AM (2013) Polymeric biomaterials with engineered degradation. J Polym Sci Pt A Polym Chem 51(17):3531–3566

    Article  CAS  Google Scholar 

  67. Vold IMN, Christensen BE (2005) Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 340(4):679–684

    Article  CAS  PubMed  Google Scholar 

  68. Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465

    Article  CAS  PubMed  Google Scholar 

  69. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114

    Article  PubMed  Google Scholar 

  70. Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci 86:7663–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O’Bryan CS et al (2017) Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull 42(8):571–577

    Article  CAS  Google Scholar 

  72. Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW (2016) 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng 2(10):1781–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grosskopf AK, Truby RL, Kim H, Perazzo A, Lewis JA, Stone HA (2018) Viscoplastic matrix materials for embedded 3D printing. ACS Appl Mater Interfaces 10(27):23353–23361

    Article  CAS  PubMed  Google Scholar 

  74. Hoesli CA et al (2012) Reversal of diabetes by βtC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J Biomed Mater Res - Part B Appl Biomater 100 B(4):1017–1028

    Article  CAS  Google Scholar 

  75. Jia J et al (2014) Engineering alginate as bioink for bioprinting. Acta Biomater 10(10):4323–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beyer ST, Bsoul A, Ahmadi A, Walus K (2013) 3D alginate constructs for tissue engineering printed using a coaxial flow focusing microfluidic device. In: 2013 transducers eurosensors XXVII 17th Int. Conf. solid-state sensors, actuators microsystems, pp 1206–1209

    Chapter  Google Scholar 

  77. Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10(2)

    Google Scholar 

  78. Jeon O, Alt DS, Ahmed SM, Alsberg E (2012) The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials 33(13):3503–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Das S et al (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  PubMed  Google Scholar 

  80. Ng WL, Yeong WY, Naing MW (2016) Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprinting 2(1):53–62

    CAS  Google Scholar 

  81. Lim KS et al (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2(10):1752–1762

    Article  CAS  PubMed  Google Scholar 

  82. Kolesky DB, Homan KA, Skylar-scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. PNAS 113(12):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park JY et al (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3)

    Google Scholar 

  84. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4(8):1399–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Assaad E, Maire M, Lerouge S (2015) Injectable thermosensitive chitosan hydrogels with controlled gelation kinetics and enhanced mechanical resistance. Carbohydr Polym 130:87–96

    Article  CAS  PubMed  Google Scholar 

  86. Chenite A et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  CAS  PubMed  Google Scholar 

  87. Li B et al (2015) Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater 22:59–69

    Article  CAS  PubMed  Google Scholar 

  88. Yang J, Bai R, Suo Z (2018) Topological adhesion of wet materials. Adv Mater 1800671:1–7

    Google Scholar 

  89. Li J et al (2017) Tough adhesives for diverse wet surfaces. Science 357(6349):378–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Pt A 101A(1):272–284

    Article  CAS  Google Scholar 

  91. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Skardal A et al (2015) A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 25:24–34

    Article  CAS  PubMed  Google Scholar 

  93. Lee Y-B et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652

    Article  CAS  PubMed  Google Scholar 

  94. Snyder JE et al (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3(3):034112

    Article  CAS  PubMed  Google Scholar 

  95. Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  Google Scholar 

  96. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009

    Article  PubMed  Google Scholar 

  97. Bertassoni LE et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. F. Y. Hsieh, H. H. Lin, and S. H. Hsu, “3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair,” Biomaterials, vol. 71:48–57, 2015.

    Google Scholar 

  99. Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020

    Article  CAS  PubMed  Google Scholar 

  100. Jung JW, Lee JS, Cho DW (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6(February):1–9

    Google Scholar 

  101. Righetti PG, Brost BCW, Snyder RS (1981) On the limiting pore size of hydrophilic gels for electrophoresis and isoelectric focussing. J Biochem Biophys Methods 4:347–363

    Article  CAS  PubMed  Google Scholar 

  102. Buckley CT, Thorpe SD, O’Brien FJ, Robinson AJ, Kelly DJ (2009) The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed Mater 2(5):512–521

    Article  PubMed  Google Scholar 

  103. Duarte Campos DF et al (2015) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Pt A 21(3–4):740–756

    Article  CAS  Google Scholar 

  104. Armstrong JPK, Burke M, Carter BM, Davis SA, Perriman AW (2016) 3D bioprinting using a templated porous bioink. Adv Healthc Mater 5(14):1724–1730

    Article  CAS  PubMed  Google Scholar 

  105. Gao Q, He Y, Fu JZ, Liu A, Ma L (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215

    Article  CAS  PubMed  Google Scholar 

  106. Bencherif SA et al (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci 109(48):19590–19595

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang L et al (2017) UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery. Carbohydr Polym 174(July):904–914

    Article  CAS  PubMed  Google Scholar 

  108. Wu Q, Therriault D, Heuzey MC (2018) Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater Sci Eng 4(7):2643–2652

    Article  CAS  PubMed  Google Scholar 

  109. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Article  CAS  PubMed  Google Scholar 

  110. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  CAS  PubMed  Google Scholar 

  111. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95

    Article  CAS  PubMed  Google Scholar 

  112. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4):045002

    Article  PubMed  Google Scholar 

  114. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006

    Article  CAS  PubMed  Google Scholar 

  115. Highley CB, Song KH, Daly AC, Burdick JA (2019) Jammed microgel inks for 3D printing applications. Adv Sci 6(1):1801076

    Article  CAS  Google Scholar 

  116. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103

    Article  CAS  PubMed  Google Scholar 

  117. Kundu J, Shim JH, Jang J, Kim SW, Cho DW (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  CAS  PubMed  Google Scholar 

  118. Zheng Z et al (2018) 3D bioprinting of self-standing silk-based bioink. Adv Healthc Mater 7(6):1–12

    Article  CAS  Google Scholar 

  119. Wu D et al (2018) 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Mater Des 160:486–495

    Article  CAS  Google Scholar 

  120. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Acta Biomaterialia Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte / macrophage responses : Unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622

    Article  CAS  PubMed  Google Scholar 

  121. Xiaohua L, Peter M (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  122. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  123. Homan KA et al (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  124. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61(12):1007–1019

    Article  CAS  PubMed  Google Scholar 

  125. Zhang H, Liu X, Yang M, Zhu L (2015) Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Mater Sci Eng C 55:8–13

    Article  CAS  Google Scholar 

  126. Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115

    Article  CAS  PubMed  Google Scholar 

  127. Shanjani Y, Pan CC, Elomaa L, Yang Y (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7(4):045008

    Article  CAS  PubMed  Google Scholar 

  128. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1752–1762

    Article  CAS  Google Scholar 

  129. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res Pt A 101A(5):1255–1264

    Article  CAS  Google Scholar 

  130. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805

    Article  CAS  PubMed  Google Scholar 

  131. Lee V et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  CAS  PubMed  Google Scholar 

  132. Ng WL, Yeong WY, Naing MW (2016) Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Proc CIRP 49:105–112

    Article  Google Scholar 

  133. Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting:1, 22–2, 35

    Google Scholar 

  134. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Biomaterials organ printing : Tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee VK et al (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wüst S, Müller R, Hofmann S (2015) 3D Bioprinting of complex channels—effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res Pt A 103(8):2558–2570

    Article  CAS  Google Scholar 

  137. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400

    Article  CAS  PubMed  Google Scholar 

  138. Veiseh O et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ratner BD et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci 107(34):15211–15216

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kim YK, Que R, Wang S-W, Liu WF (2014) Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 3(7):989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsai RK, Rodriguez PL, Discher DE, Pantano DA, Harada T, Christian DA (2013) Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Becker ST et al (2012) Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int J Oral Maxillofac Surg 41(9):1153–1160

    Article  CAS  PubMed  Google Scholar 

  143. Lake GJ, Thomas AG (1967) The Strength of Highly Elastic Materials. Proc R Soc A Math Phys Eng Sci 300(1460):108–119

    CAS  Google Scholar 

  144. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10(5):672–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    Article  CAS  Google Scholar 

  146. Sun J et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang Y, Wang X, Yang F, Shen H, Wu D (2016) A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater:7178–7184

    Google Scholar 

  148. Bai R, Yang J, Suo Z (2019) Fatigue of hydrogels. Eur J Mech A/Solids 74(2018):337–370

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Luc Mongeau and Dr. Jianyu Li (Department of Mechanical Engineering, McGill University) for inspiring my research on biofabrication for tissue engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, G. (2020). Biofabrication in Tissue Engineering. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_12

Download citation

Publish with us

Policies and ethics