Skip to main content

Animal Models for Bone Tissue Engineering and Osteoinductive Biomaterial Research

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Animal bone defect model is the most important and widely used in vivo model for the study of osteoinductive biomaterials and bone tissue engineering. There are many different types of bone defect models at various anatomical sites, including skull and long bones, and using different animals, including mice, rats, rabbits, dogs, swine, and even nonhuman primates. Proper selection of animal model for a specific biomaterial or bone tissue engineering study is critical to obtain reasonable and reliable results. In this chapter, calvarial, weight-bearing long bone segmental defect models, metaphyseal defect models, and vertebral defect models are reviewed referring to several selection criteria of bone defect models. Several issues regarding model selection are discussed, including the characteristics of the model, the material being tested, and the experimental purpose. Considering the inconsistency between the current models and the real clinical conditions, we propose a suggestion for the future development of animal models for bone tissue engineering and osteoinductive biomaterial research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomaxillofacial nonunions. Clin Orthop Relat Res 205:299

    Google Scholar 

  2. Schmitz JP, Schwartz Z, Hollinger JO, Boyan BD (1990) Characterization of rat calvarial nonunion defects. Cells Tissues Organs 138:185–192

    Article  CAS  Google Scholar 

  3. Trotta DR, Gorny C Jr, Zielak JC, Gonzaga CC, Giovanini AF, Deliberador TM (2014) Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: histologic and histomorphometric study in rat calvaria. J Craniomaxillofac Surg 42:738–743

    Article  PubMed  Google Scholar 

  4. Guanghui L, Xi W, Jian C, Zhaoyu J, Dongyang M, Yanpu L et al (2014) Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Br J Oral Maxillofac Surg 52:134–139

    Article  Google Scholar 

  5. Liu X, Zhou S, Li Y, Yan J (2012) Stromal cell derived factor-1α enhances bone formation based on in situ recruitment: a histologic and histometric study in rabbit calvaria. Biotechnol Lett 34:387–395

    Article  CAS  PubMed  Google Scholar 

  6. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J et al (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486

    Article  CAS  PubMed  Google Scholar 

  7. Liping X, Daisuke U, Sylvain C, Collin HB, Lyndon C, Liisa K et al (2014) Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. Endocrinology 155:965–974

    Article  CAS  Google Scholar 

  8. Liao YH, Chang YH, Sung LY, Li KC, Yeh CL, Yen TC et al (2014) Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 35:4901–4910

    Article  CAS  PubMed  Google Scholar 

  9. Stephan SJ, Tholpady SS, Ce GBA, Botchway EA, Nair LS, Ogle RC et al (2010) Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope 120:895–901

    PubMed  PubMed Central  Google Scholar 

  10. Jun Z, Gang S, Changsheng L, Shaoyi W, Wenjie Z, Xiaochen Z et al (2012) Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds. Tissue Eng Part A 18:185–197

    Article  CAS  Google Scholar 

  11. Josephine F, Zhi Y, Shihjye T, Charisse T, Nimni ME, Mark U et al (2014) Injectable gel graft for bone defect repair. Regen Med 9:41–51

    Article  CAS  Google Scholar 

  12. Glowacki J, Altobelli D, Mulliken JB (1981) Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int 33:71–76

    Article  CAS  PubMed  Google Scholar 

  13. Sakata Y, Ueno T, Kagawa T, Kanou M, Fujii T, Yamachika E et al (2006) Osteogenic potential of cultured human periosteum-derived cells—a pilot study of human cell transplantation into a rat calvarial defect model. J Craniomaxillofac Surg 34:461–465

    Article  PubMed  Google Scholar 

  14. Chim H, Schantz JT (2006) Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg 117:468–478

    Article  CAS  PubMed  Google Scholar 

  15. Mhawi AA, Peel SA, Fok TC, Clokie CM (2007) Bone regeneration in athymic calvarial defects with Accell DBM100. J Craniofac Surg 18:497–503

    Article  PubMed  Google Scholar 

  16. Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS (2012) Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 23:473–483

    Article  CAS  PubMed  Google Scholar 

  17. Berner A, Woodruff MA, Lam CXF, Arafat MT, Saifzadeh S, Steck R et al (2014) Effects of scaffold architecture on cranial bone healing. Int J Oral Maxillofac Surg 43:506–513

    Article  CAS  PubMed  Google Scholar 

  18. Lin CY, Chang YH, Li KC, Lu CH, Sung LY, Yeh CL et al (2013) The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 34:9401–9412

    Article  CAS  PubMed  Google Scholar 

  19. Nick T, Ryo J, Riddhi G, Lukasz W, Fabio L, Charles M et al (2013) Modification of xenogeneic graft materials for improved release of P-15 peptides in a calvarium defect model. J Craniofac Surg 25:70–76

    Google Scholar 

  20. Tanuma Y, Matsui K, Kawai T, Matsui A, Suzuki O, Kamakura S et al (2013) Comparison of bone regeneration between octacalcium phosphate/collagen composite and β-tricalcium phosphate in canine calvarial defect. Oral Surg Oral Med Oral Pathol Oral Radiol 115:9–17

    Article  PubMed  Google Scholar 

  21. Sato K, Urist MR (2003) Induced regeneration of calvaria by bone morphogenetic protein (BMP) in dogs. Clin Orthop Relat Res 187:301

    Google Scholar 

  22. Kinsella CR, Bykowski MR, Lin AY, Cray JJ, Durham EL, Smith DM et al (2011) BMP-2-mediated regeneration of large-scale cranial defects in the canine: an examination of different carriers. Plast Reconstr Surg 127:1865

    Article  CAS  PubMed  Google Scholar 

  23. Mulliken JB, Glowacki J (1980) Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65:553–560

    Article  CAS  PubMed  Google Scholar 

  24. Freeman E, Turnbull RS (2010) The value of osseous coagulum as a graft material. J Periodontal Res 8:229–236

    Article  Google Scholar 

  25. Turnbull RS, Freeman E (2010) Use of wounds in the parietal bone of the rat for evaluating bone marrow for grafting into periodontal defects. J Periodontal Res 9:39–43

    Article  Google Scholar 

  26. Livingston TL, Gordon S, Archambault M, Kadiyala S, Mcintosh K, Smith A et al (2003) Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mater Med 14:211–218

    Article  CAS  PubMed  Google Scholar 

  27. Komaki H, Tanaka T, Chazono M, Kikuchi T (2006) Repair of segmental bone defects in rabbit tibiae using a complex of -tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 27:5118–5126

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Feng Q, Liu X, Dong W, Cui F (2006) Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials 27:1917–1923

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y (2008) Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. J Mater Sci Mater Med 19:2367–2376

    Article  CAS  PubMed  Google Scholar 

  30. Sarban S, Senkoylu A, Isikan UE, Korkusuz P, Korkusuz F (2009) Can rhBMP-2 containing collagen sponges enhance bone repair in ovariectomized rats?: a preliminary study. Clin Orthop Relat Res 467:3113

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rena S, Jessica G, Alan E, Chu TMG, Shawn G (2011) Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma 25:472

    Article  Google Scholar 

  32. Vaida G, Micah M, Alan I, Fangjun L, Nicola P, Damian G et al (2012) Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Am 94:2063–2073

    Article  Google Scholar 

  33. Corinne S, Lashan SC, Olabisi RM, Kayleigh S, Zawaunyka L, Zbigniew G et al (2013) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31:1597–1604

    Article  CAS  Google Scholar 

  34. Angle SR, Sena K, Sumner DR, Virkus WW, Virdi AS (2012) Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study. J Musculoskelet Neuronal Interact 12:28–37

    CAS  PubMed  Google Scholar 

  35. Duan Z, Zheng Q, Guo X, Li C, Wu B, Wu W (2008) Repair of rabbit femoral defects with a novel BMP2-derived oligopeptide P24. J Huazhong Univ Sci Technol Med Sci 28:426–430

    Article  Google Scholar 

  36. Amaia C, Reichert JC, Epari DR, Siamak S, Arne B, Hanna S et al (2013) Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 34:9960–9968

    Article  CAS  Google Scholar 

  37. Berner A, Reichert JC, Woodruff MA, Saifzadeh S, Morris AJ, Epari DR et al (2013) Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater 9:7874–7884

    Article  CAS  PubMed  Google Scholar 

  38. Dai KR, Xu XL, Tang TT, Zhu ZA, Yu CF, Lou JR et al (2005) Repairing of goat tibial bone defects with BMP-2 gene–modified tissue-engineered bone. Calcif Tissue Int 77:55–61

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Liu W, Cui L, Cao Y (2006) Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 12:423

    Article  CAS  PubMed  Google Scholar 

  40. Pluhar GE, Turner AS, Pierce AR, Toth CA, Wheeler DL (2006) A comparison of two biomaterial carriers for osteogenic protein-1 (BMP-7) in an ovine critical defect model. J Bone Joint Surg Br 88:960–966

    Article  CAS  PubMed  Google Scholar 

  41. Fialkov JA, Holy CE, Shoichet MS, Davies JE (2003) In vivo bone engineering in a rabbit femur. J Craniofac Surg 14:324–332

    Article  PubMed  Google Scholar 

  42. Fan JJ, Mu TW, Qin JJ, Bi L, Pei GX (2015) Different effects of implanting sensory nerve or blood vessel on the vascularization, neurotization, and osteogenesis of tissue-engineered bone in vivo. Biomed Res Int 2014:412570

    Google Scholar 

  43. Nimrod R, Tova B, Alon B, Ben S, Michal ST, Yankel G et al (2009) Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 45:918–924

    Article  CAS  Google Scholar 

  44. Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24:579–589

    Article  CAS  PubMed  Google Scholar 

  45. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155

    Article  CAS  PubMed  Google Scholar 

  46. Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST (2009) Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 10:19–26

    Article  CAS  PubMed  Google Scholar 

  47. Dehghani SN, Bigham AS, Nezhad ST, Shafiei Z (2008) Effect of bovine fetal growth plate as a new xenograft in experimental bone defect healing: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank 9:91–99

    Article  CAS  PubMed  Google Scholar 

  48. Itoi T, Harada Y, Irie H, Sakamoto M, Tamura K, Yogo T et al (2016) Escherichia coli-derived recombinant human bone morphogenetic protein-2 combined with bone marrow-derived mesenchymal stromal cells improves bone regeneration in canine segmental ulnar defects. BMC Vet Res 12:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bigham AS, Dehghani SN, Shafiei Z, Nezhad ST (2008) Xenogenic demineralized bone matrix and fresh autogenous cortical bone effects on experimental bone healing: radiological, histopathological and biomechanical evaluation. J Orthop Traumatol 9:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W et al (2011) Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 19:53

    Article  CAS  PubMed  Google Scholar 

  51. Kimelman BN, Pelled GD (2009) The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials 30:4639–4648

    Article  CAS  Google Scholar 

  52. Sun JS, Chen PY, Tsuang YH, Chen MH, Chen PQ (2009) Vitamin-D binding protein does not enhance healing in rat bone defects: a pilot study. Clin Orthop Relat Res 467:3156–3164

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lazard ZW, Heggeness MH, Hipp JA, Corinne S, Fuentes AS, Nistal RP et al (2011) Cell-based gene therapy for repair of critical size defects in the rat fibula. J Cell Biochem 112:1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chakkalakal D, Strates B, Garvin K, Novak J, Fritz E, Mollner T et al (2001) Demineralized bone matrix as a biological scaffold for bone repair. Tissue Eng 7:161–177

    Article  CAS  PubMed  Google Scholar 

  55. Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A (2012) The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg 10:96–101

    Article  PubMed  Google Scholar 

  56. Oryan A, Meimandi PA, Shafieisarvestani Z, Bigham AS (2012) Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, histopathological and biomechanical evaluation. Cell Tissue Bank 13:639–651

    Article  CAS  PubMed  Google Scholar 

  57. Bigham-Sadegh A, Karimi I, Shadkhast M, Mahdavi MH (2015) Hydroxyapatite and demineralized calf fetal growth plate effects on bone healing in rabbit model. J Orthop Traumatol 16:141–149

    Article  PubMed  Google Scholar 

  58. Zellin G, Linde A (1997) Treatment of segmental defects in long bones using osteopromotive membranes and recombinant human bone morphogenetic protein-2: an experimental study in rabbits. Scand J Plast Reconstr Surg Hand Surg 31:97–104

    Article  CAS  PubMed  Google Scholar 

  59. Luca L, Rougemont AL, Walpoth BH, Boure L, Tami A, Anderson JM et al (2015) Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res A 96A:66–74

    Article  CAS  Google Scholar 

  60. Tu J, Wang H, Li H, Dai K, Wang J, Zhang X (2009) The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials 30:4369–4376

    Article  CAS  PubMed  Google Scholar 

  61. Satoshi K, Ryuhei F, Shoji Y, Shinji F, Kazutoshi N, Koichiro T et al (2003) Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Biomaterials 24:1643–1651

    Article  Google Scholar 

  62. Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T et al (1996) Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop Relat Res 327:272–282

    Article  Google Scholar 

  63. Bouxsein ML, Turek TJ, Blake CA, D’Augusta D, Li X, Stevens M et al (2001) Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J Bone Joint Surg Am 83-A:1219

    Article  Google Scholar 

  64. Geuze RE, Theyse LFH, Kempen DHR, Hazewinkel HAW, Kraak HYA, Oner FC et al (2012) A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng Part A 18:2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Theyse LF, Oosterlaken-Dijksterhuis MA, Van DJ, Dhert WJ, Hazewinkel HA (2006) Growth hormone stimulates bone healing in a critical-sized bone defect model. Clin Orthop Relat Res 446:259

    Article  CAS  PubMed  Google Scholar 

  66. Jones CB, Sabatino CT, Badura JM, Sietsema DL, Marotta JS (2008) Improved healing efficacy in canine ulnar segmental defects with increasing recombinant human bone morphogenetic protein-2/allograft ratios. J Orthop Trauma 22:550–559

    Article  PubMed  Google Scholar 

  67. Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC (1994) Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop Relat Res 301:302

    Google Scholar 

  68. Bigham-Sadegh A, Mirshokraei P, Karimi I, Oryan A, Aparviz A, Shafiei-Sarvestani Z (2012) Effects of adipose tissue stem cell concurrent with greater omentum on experimental long-bone healing in dog. Connect Tissue Res 53:334–342

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Zhu L, Cao Y, Liu Y, Xu Y, Ye W et al (2012) Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med 23:1941–1949

    Article  CAS  PubMed  Google Scholar 

  70. Kanazawa M, Tsuru K, Fukuda N, Sakemi Y, Nakashima Y, Ishikawa K (2017) Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. J Mater Sci Mater Med 28:85

    Article  CAS  PubMed  Google Scholar 

  71. Betti LV, Bramante PCM, Cestari PTM, Granjeiro PJM, Garcia PRB (2011) Repair of rabbit femur defects with organic bovine bone cancellous block or cortical granules. Int J Oral Maxillofac Implants 26:1167

    PubMed  Google Scholar 

  72. Gil-Albarova J, Vila M, Badiola-Vargas J, Sánchez-Salcedo S, Herrera A, Vallet-Regi M (2012) In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomater 8:3777–3783

    Article  CAS  PubMed  Google Scholar 

  73. Zheng H, Bai Y, Shih MS, Hoffmann C, Peters F, Waldner C et al (2014) Effect of a β-TCP collagen composite bone substitute on healing of drilled bone voids in the distal femoral condyle of rabbits. J Biomed Mater Res B Appl Biomater 102:376–383

    Article  CAS  PubMed  Google Scholar 

  74. Liu J, Mao K, Liu Z, Wang X, Cui F, Guo W et al (2013) Injectable biocomposites for bone healing in rabbit femoral condyle defects. PLoS One 8:e75668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alireza RG, Lambers FM, Mehdi GR, Ralph M, Pioletti DP (2011) In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Bone 49:1357–1364

    Article  CAS  Google Scholar 

  76. Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A et al (2015) Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 185:765–775

    Article  CAS  PubMed  Google Scholar 

  77. Laurent M, Bénédicte R, Olivier C, Jean-Christophe F (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81

    Article  CAS  Google Scholar 

  78. Nagashima M, Sakai A, Uchida S, Tanaka S, Tanaka M, Nakamura T (2005) Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone 36:502–511

    Article  CAS  PubMed  Google Scholar 

  79. Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D et al (2011) Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model. Int J Nanomedicine 2011:1543–1552

    Article  Google Scholar 

  80. Trejo CG, Lozano D, Manzano M, Doadrio JC, Salinas AJ, Dapía S et al (2010) The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials 31:8564–8573

    Article  CAS  PubMed  Google Scholar 

  81. Guillemin G, Patat JL, Fournie J, Chetail M (2010) The use of coral as a bone graft substitute. J Biomed Mater Res A 21:557–567

    Article  Google Scholar 

  82. Choi S, Liu IL, Yamamoto K, Honnami M, Sakai T, Ohba S et al (2014) Implantation of tetrapod-shaped granular artificial bones or Î2-tricalcium phosphate granules in a canine large bone-defect model. J Vet Med Sci 76:229–235

    Article  CAS  PubMed  Google Scholar 

  83. Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11:137–144

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bloemers FW, Stahl JP, Sarkar MR, Linhart W, Rueckert U, Wippermann BW (2004) Bone substitution and augmentation in trauma surgery with a resorbable calcium phosphate bone cement. Eur J Trauma 30:17–22

    Article  Google Scholar 

  85. Liang H, Wang K, Shimer AL, Li X, Balian G, Shen FH (2010) Use of a bioactive scaffold for the repair of bone defects in a novel reproducible vertebral body defect model. Bone 47:197–204

    Article  CAS  PubMed  Google Scholar 

  86. Dmitriy S, Ilan K, Wafa T, Doron CY, Anthony O, Susan S et al (2011) Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm 8:1592

    Article  CAS  Google Scholar 

  87. Quan R, Ni Y, Zhang L, Xu J, Zheng X, Yang D (2014) Short- and long-term effects of vertebroplastic bone cement on cancellous bone. J Mech Behav Biomed Mater 35:102–110

    Article  CAS  PubMed  Google Scholar 

  88. Yang HL, Zhu XS, Chen L, Chen CM, Mangham DC, Coulton LA et al (2012) Bone healing response to a synthetic calcium sulfate/β-tricalcium phosphate graft material in a sheep vertebral body defect model. J Biomed Mater Res B Appl Biomater 100B:1911–1921

    Article  CAS  PubMed Central  Google Scholar 

  89. Zhu X, Chen X, Chen C, Wang G, Gu Y, Geng D et al (2012) Evaluation of calcium phosphate and calcium sulfate as injectable bone cements in sheep vertebrae. J Spinal Disord Tech 25:333

    Article  PubMed  Google Scholar 

  90. Kobayashi H, Turner AS, Kawamoto T, Bauer TW (2010) Evaluation of a silica-containing bone graft substitute in a vertebral defect model. J Biomed Mater Res A 92A:596–603

    CAS  Google Scholar 

  91. Kobayashi H, Fujishiro T, Belkoff SM, Kobayashi N, Turner AS, Seim HB et al (2010) Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. J Biomed Mater Res A 88A:880–888

    Article  CAS  Google Scholar 

  92. Zhen W, Bin L, Lei C, Jiang C (2011) Evaluation of an osteostimulative putty in the sheep spine. J Mater Sci Mater Med 22:185–191

    Article  CAS  Google Scholar 

  93. James AW, Chiang M, Asatrian G, Shen J, Goyal R, Chung CG et al (2016) Vertebral implantation of NELL-1 enhances bone formation in an osteoporotic sheep model. Tissue Eng Part A 22:840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Verron E, Pissonnier ML, Lesoeur J, Schnitzler V, Fellah BH, Pascal-Moussellard H et al (2014) Vertebroplasty using bisphosphonate-loaded calcium phosphate cement in a standardized vertebral body bone defect in an osteoporotic sheep model. Acta Biomater 10:4887–4895

    Article  CAS  PubMed  Google Scholar 

  95. Turner TM, Urban RM, Singh K, Hall DJ, Renner SM, Lim TH et al (2008) Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Spine J 8:482–487

    Article  PubMed  Google Scholar 

  96. Manrique E, Chaparro D, Cebrián JL, López-Durán L (2014) In vivo tricalcium phosphate, bone morphogenetic protein and autologous bone marrow biomechanical enhancement in vertebral fractures in a porcine model. Int Orthop 38:1993–1999

    Article  PubMed  Google Scholar 

  97. Pelled G, Sheyn D, Tawackoli W, Jun DS, Koh Y, Su S et al (2016) BMP6-engineered MSCs induce vertebral bone repair in a pig model: a pilot study. Stem Cells Int 2016:1–8

    Article  CAS  Google Scholar 

  98. Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schutz MA, Duda GN et al (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30:2149–2163

    Article  CAS  PubMed  Google Scholar 

  99. Vaněček V, Klíma K, Kohout A, Foltán R, Jiroušek O, Šedý J et al (2013) The combination of mesenchymal stem cells and a bone scaffold in the treatment of vertebral body defects. Eur Spine J 22:2777–2786

    Article  PubMed  PubMed Central  Google Scholar 

  100. Alt V, Thormann U, Ray S, Zahner D, Dürselen L, Lips K et al (2013) A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures. Acta Biomater 9:7035–7042

    Article  CAS  PubMed  Google Scholar 

  101. Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X (2000) Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 21:1283–1290

    Article  CAS  PubMed  Google Scholar 

  102. Luangphakdy V, Shinohara K, Pan H, Boehm C, Samaranska A, Muschler GF (2015) Evaluation of rhBMP-2/collagen/TCP-HA bone graft with and without bone marrow cells in the canine femoral multi defect model. Eur Cell Mater 29:57–68

    Article  CAS  PubMed  Google Scholar 

  103. Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H et al (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng Part A 19:125–134

    Article  CAS  PubMed  Google Scholar 

  104. Luangphakdy V, Walker E, Shinohara K, Pan H, Hefferan T, Bauer TW et al (2013) Evaluation of osteoconductive scaffolds in the canine femoral multi-defect model. Tissue Eng Part A 19:634–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Takigami H, Kumagai K, Latson L, Togawa D, Bauer T, Powell K et al (2010) Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 25:1333–1342

    Article  Google Scholar 

  106. Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A (2013) Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci 14:337

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schubert T, Lafont S, Beaurin G, Grisay G, Behets C, Gianello P et al (2013) Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs. Biomaterials 34:4428–4438

    Article  CAS  PubMed  Google Scholar 

  108. Saifzadeh S, Pourreza B, Hobbenaghi R, Naghadeh BD, Kazemi S (2009) Autogenous greater omentum, as a free nonvascularized graft, enhances bone healing: an experimental nonunion model. J Investig Surg 22:129–137

    Article  Google Scholar 

  109. Aalami OO, Nacamuli RP, Lenton KA, Cowan CM, Fang TD, Fong KD et al (2004) Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg 114:713

    Article  PubMed  Google Scholar 

  110. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14:13–29

    Article  CAS  Google Scholar 

  111. Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2010) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435

    Article  Google Scholar 

  112. Hae-Ryong S, Ajay P, Jeong-Hee L, Hyung-Bin P, Do-Kyung R, Gon-Sup K et al (2002) Spontaneous bone regeneration in surgically induced bone defects in young rabbits. J Pediatr Orthop B 11:343–349

    Google Scholar 

  113. Nagai N, Qin CL, Nagatsuka H, Inoue M, Ishiwari Y, Nagai N et al (1999) Age effects on ectopic bone formation induced by purified bone morphogenetic protein. Int J Oral Maxillofac Surg 7:107–114

    Google Scholar 

  114. Bosch C, Melsen B, Vargervik K (1998) Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg 9:310–316

    Article  CAS  PubMed  Google Scholar 

  115. Takagi K, Urist MR (1982) The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann Surg 196:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rivas R, Shapiro F (2002) Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit. J Bone Joint Surg Am 84-A:85

    Article  Google Scholar 

  117. Meyer RA Jr, Meyer MH, Tenholder M, Wondracek S, Wasserman R, Garges P (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85:1243–1254

    Article  PubMed  Google Scholar 

  118. Holstein JH, Garcia P, Histing T, Kristen A, Scheuer C, Menger MD et al (2008) Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma 23:S31–S38

    Article  Google Scholar 

  119. Batten RL (1982) Bone repair and fracture healing in man. Injury 13:532–533

    Article  Google Scholar 

  120. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A et al (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13:357

    Article  CAS  PubMed  Google Scholar 

  121. Kawaguchi H, Kurokawa T, Hanada K, Hiyama Y, Tamura M, Ogata E et al (1994) Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and streptozotocin-diabetic rats. Endocrinology 135:774–781

    Article  CAS  PubMed  Google Scholar 

  122. Kilborn SH, Trudel G, Uhthoff HK (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Top Lab Anim Sci 41:21

    CAS  PubMed  Google Scholar 

  123. Boutrand JP (2012) Chapter 12-Methods and interpretation of performance studies for bone implants. In: Boutrand J-P (ed) Woodhead publishing series in biomaterials, biocompatibility and performance of medical devices. Woodhead Publishing, Sawston, pp 271–307. ISBN 9780857090706

    Google Scholar 

  124. Wang X, Mabrey JD, Agrawal CM (1998) An interspecies comparison of bone fracture properties. Biomed Mater Eng 8:1–9

    CAS  PubMed  Google Scholar 

  125. Martiniaková M, Omelka R, Chrenek P, Ryban L, Parkányi V, Grosskopf B et al (2005) Changes of femoral bone tissue microstructure in transgenic rabbits. Folia Biol 51:140–144

    Google Scholar 

  126. Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO (2010) The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev 16:123–145

    Article  PubMed  Google Scholar 

  127. Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M et al (2006) Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skelet Radiol 35:34–41

    Article  Google Scholar 

  128. Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S

    Article  CAS  PubMed  Google Scholar 

  129. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O et al (1988) Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol 255:E416–EE21

    CAS  PubMed  Google Scholar 

  130. Viateau V, Guillemin G (2005) Experimental animal models for tissue-engineered bone regeneration In: Quarto R, Petite H (Eds) Engineered bone (pp 89–104). Austin: Landes Bioscience

    Google Scholar 

  131. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    Article  CAS  PubMed  Google Scholar 

  132. Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–331

    Article  CAS  PubMed  Google Scholar 

  133. Stover BJ, Andersen AC (1971) The beagle as an experimental dog. Radiat Res 45:449

    Article  Google Scholar 

  134. Kimmel DB, Jee WS (2010) A quantitative histologic study of bone turnover in young adult beagles. Anat Rec 203:31–45

    Article  Google Scholar 

  135. Fernández-Tresguerres-Hernández-Gil I, Alobera-Gracia MA, Del-Canto-Pingarrón M, Blanco-Jerez L (2006) Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Buca 11:E47–E51

    Google Scholar 

  136. Anderson M, Dhert BJ, Dalmeijer R, Leenders H, Van BC, Verbout A (1999) Critical size defect in the goat’s os ilium. A model to evaluate bone grafts and substitutes. Clin Orthop Relat Res 364:231

    Article  Google Scholar 

  137. Van Der Donk S, Buma P, Aspenberg P, Schreurs BW (2001) Similarity of bone ingrowth in rats and goats: a bone chamber study. Comp Med 51:336

    PubMed  Google Scholar 

  138. Eitel F, Klapp F, Jacobson W, Schweiberer L (1981) Bone regeneration in animals and in man. A contribution to understanding the relative value of animal experiments to human pathophysiology. Arch Orthop Trauma Surg 99(1):59–64

    Article  CAS  PubMed  Google Scholar 

  139. Liebschner MAK (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714

    Article  CAS  PubMed  Google Scholar 

  140. Qin L, Mak AT, Cheng CW, Hung LK, Chan KM (2010) Histomorphological study on pattern of fluid movement in cortical bone in goats. Anat Rec Adv Integr Anat Evol Biol 255:380–387

    Google Scholar 

  141. Turner AS, Villanueva AR (1994) Static and dynamic histomorphometric data in 9- to 11-year-old ewes. Vet Comp Orthop Traumatol 07:101–109

    Article  Google Scholar 

  142. Den Boer FC, Patka P, Bakker FC, Wippermann BW, Lingen A, Van VGQ et al (2010) New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res 17:654–660

    Article  Google Scholar 

  143. Spaargaren DH (1994) Metabolic rate and body size: a new view on the ‘surface law’ for basic metabolic rate. Acta Biotheor 42:263

    Article  CAS  PubMed  Google Scholar 

  144. Willie BM, Bloebaum RD, Bireley WR (2010) Determining relevance of a weight-bearing ovine model for bone ingrowth assessment. J Biomed Mater Res A 69(3):567–576

    Article  CAS  Google Scholar 

  145. Lamerigts NM, Buma P, Huiskes R, Schreurs W, Gardeniers J, Slooff TJ (2000) Incorporation of morsellized bone graft under controlled loading conditions. A new animal model in the goat. Biomaterials 21:741–747

    Article  CAS  PubMed  Google Scholar 

  146. Raschke M, Kolbeck S, Bail H, Schmidmaier G, Flyvbjerg A, Lindner T et al (2001) Homologous growth hormone accelerates healing of segmental bone defects. Bone 29:368–373

    Article  CAS  PubMed  Google Scholar 

  147. Michael T, Stefan SM, Peter K, Joerg W, Karl Andreas S (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633

    Article  Google Scholar 

  148. Raab DM, Crenshaw TD, Kimmel DB, Smith EL (2010) A histomorphometric study of cortical bone activity during increased weight-bearing exercise. J Bone Miner Res 6:741–749

    Article  Google Scholar 

  149. Ermanno B, Paola B (2014) Osteoporosis-bone remodeling and animal models. Toxicol Pathol 42:957–969

    Article  CAS  Google Scholar 

  150. Mosekilde L, Kragstrup J, Richards A (1987) Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40:318–322

    Article  CAS  PubMed  Google Scholar 

  151. Li M, Weisbrode SE, Safron JA, Stills HG, Jankowsky ML, Ebert DC et al (1992) Calcium-restricted ovariectomized sinclair s-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone 13:379

    Article  CAS  Google Scholar 

  152. Kragstrup J, Richards A, Fejerskov O (1989) Effects of fluoride on cortical bone remodeling in the growing domestic pig. Bone 10:421–424

    Article  CAS  PubMed  Google Scholar 

  153. Swindle MM, Smith AC, Hepburn BJ (1988) Swine as models in experimental surgery. J Investig Surg 1:65–79

    Article  CAS  Google Scholar 

  154. O’Loughlin PF, Morr S, Bogunovic L, Kim AD, Park B, Lane JM (2008) Selection and development of preclinical models in fracture-healing research. J Bone Joint Surg Am 90(Suppl 1):79–84

    Article  PubMed  Google Scholar 

  155. Martini L, Fini M, Giavaresi G, Giardino R (2001) Sheep model in orthopedic research: a literature review. Comp Med 51:292–299

    CAS  PubMed  Google Scholar 

  156. Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA (1995) Injectable cartilage. Plast Reconstr Surg 96:1390–1398

    Article  CAS  PubMed  Google Scholar 

  157. Jackson RW, Reed CA, Israel JA, Abou-Keer FK, Garside H (1970) Production of a standard experimental fracture. Can J Surg 13:415–420

    CAS  PubMed  Google Scholar 

  158. Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101

    Article  CAS  PubMed  Google Scholar 

  159. Marturano J, Cleveland BC, Byrne MA, O’Connell S, Wixted J, Billiar K (2008) An improved murine femur fracture device for bone healing studies. J Biomech 41:1222–1228

    Article  PubMed  Google Scholar 

  160. Hebb JH, Ashley JW, Mcdaniel L, Lopas LA, Tobias J, Hankenson KD et al (2018) Bone healing in an aged murine fracture model is characterized by sustained callus inflammation and decreased cell proliferation. J Orthop Res 36(1):149–158

    CAS  PubMed  Google Scholar 

  161. Lopas LA, Belkin NS, Mutyaba PL, Gray CF, Hankenson KD, Jaimo A (2014) Fractures in geriatric mice show decreased callus expansion and bone volume. Clin Orthop Relat Res 472:3523–3532

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD (2011) Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res 30:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Puolakkainen T, Rummukainen P, Lehto J, Ritvos O, Hiltunen A, Säämänen AM et al (2017) Soluble activin type IIB receptor improves fracture healing in a closed tibial fracture mouse model. PLoS One 12:e0180593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Holstein JH, Menger MD, Culemann U, Meier C, Pohlemann T (2007) Development of a locking femur nail for mice. J Biomech 40:215–219

    Article  CAS  PubMed  Google Scholar 

  165. Manigrasso MB, O’Connor JP (2004) Characterization of a closed femur fracture model in mice. J Orthop Trauma 18:687–695

    Article  PubMed  Google Scholar 

  166. Thompson Z, Miclau T, Hu D, Helms JA (2010) A model for intramembranous ossification during fracture healing. J Orthop Res 20:1091–1098

    Article  Google Scholar 

  167. Makino T, Hak DJ, Hazelwood SJ, Curtiss S, Reddi AH (2010) Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7. J Orthop Res 23:632–638

    Article  CAS  Google Scholar 

  168. Kumabe Y, Sang YL, Waki T, Iwakura T, Takahara S, Arakura M et al (2017) Triweekly administration of parathyroid hormone (1–34) accelerates bone healing in a rat refractory fracture model. BMC Musculoskelet Disord 18:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kokubu T, Hak DJ, Hazelwood SJ, Reddi AH (2010) Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J Orthop Res 21:503–510

    Article  Google Scholar 

  170. Hietaniemi K, Peltonen J, Paavolainen P (1995) An experimental model for non-union in rats. Injury 26:681–686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (81622032, 51672184 and 81501858), Jiangsu Innovation and Entrepreneurship Program, National Basic Research Program of China (973 Program, 2014CB748600), Suzhou Science and Technology Project (SYS2019022), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, Q., Lin, X., Yang, L. (2020). Animal Models for Bone Tissue Engineering and Osteoinductive Biomaterial Research. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_11

Download citation

Publish with us

Policies and ethics