Skip to main content

Fracture Healing and Progress Towards Successful Repair

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Despite the intrinsic healing capacity of bone and advancements in orthopedic technologies, well-established interventions, including autologous bone grafting, have had a relatively limited impact on easing the burden of a proportion of the 5–20% of long bone fracture patients who suffer from delayed healing or nonunion. In this chapter, we describe how the biology of bone development and bone homeostasis are recapitulated in bone healing, and how immunological and mechanical factors regulate healing. We present the current barriers faced clinically, outlining some of the main risk factors associated with the development of delayed healing and nonunion, with a focus on bone infection, and how it hijacks the bone healing process, ultimately leading to bone destruction. We conclude by depicting the outlook on fracture healing, outlining the progress to-date and the biggest challenges we face, while highlighting how our increasing understanding of the immunomodulation of bone healing can potentially be harnessed to develop innovative strategies for patient benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shegarfi H, Reikeras O (2009) Review article: bone transplantation and immune response. J Orthop Surg (Hong Kong) 17:206–211

    Article  Google Scholar 

  3. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:224–247

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haas NP (2000) Callus modulation—fiction or reality? Chirurg 71:987–988

    Article  CAS  PubMed  Google Scholar 

  5. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res 7:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grabowski G, Cornett CA (2013) Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg 21:51–60

    Article  PubMed  Google Scholar 

  7. Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, Peacher G, Hak DJ, Stahel PF (2013) Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res 8:33

    Article  PubMed  PubMed Central  Google Scholar 

  8. Betz RR (2002) Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25:s561–s570

    PubMed  Google Scholar 

  9. Sridharan R, Reilly RB, Buckley CT (2015) Decellularized grafts with axially aligned channels for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:124–135

    Article  PubMed  Google Scholar 

  10. Hirasawa T, Kuratani S (2015) Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett 1:2. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rodan GA (1998) Bone homeostasis. Proc Natl Acad Sci U S A 95:13361–13362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson EM, Matsiko A, Farrell E, Kelly DJ, O’Brien FJ (2015) Recapitulating endochondral ossification: a promising route to in vivo bone regeneration. J Tissue Eng Regen Med 9:889–902

    Article  CAS  PubMed  Google Scholar 

  13. Karaplis AC (2008) Chapter 3—Embryonic development of bone and regulation of intramembranous and endochondral bone formation. In: Bilezikian J, Raisz LG, Martin TJ (eds) Principles of bone biology. Academic Press, San Diego, pp 53–84

    Chapter  Google Scholar 

  14. Nah HD, Rodgers BJ, Kulyk WM, Kream BE, Kosher RA, Upholt WB (1988) In situ hybridization analysis of the expression of the type II collagen gene in the developing chicken limb bud. Coll Relat Res 8:277–294

    Article  CAS  PubMed  Google Scholar 

  15. Hall BK, Miyake T (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 186:107–124

    Article  CAS  Google Scholar 

  16. Kosher RA, Kulyk WM, Gay SW (1986) Collagen gene expression during limb cartilage differentiation. J Cell Biol 102:1151–1156

    Article  CAS  PubMed  Google Scholar 

  17. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35

    CAS  PubMed  Google Scholar 

  18. Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Xu J, Colvin JS, Ornitz DM (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465

    Article  CAS  PubMed  Google Scholar 

  21. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    CAS  PubMed  Google Scholar 

  22. Perren SM (1991) The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP). Scientific background, design and application. Injury 22 Suppl 1:1–41

    CAS  PubMed  Google Scholar 

  23. Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ (2007) Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res 22:1548–1556

    Article  PubMed  Google Scholar 

  24. Matsiko A, Thompson EM, Lloyd-Griffith C, Cunniffe GM, Vinardell T, Gleeson JP, Kelly DJ, O’Brien FJ (2018) An endochondral ossification approach to early stage bone repair: use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair. J Tissue Eng Regen Med 12:e2147–e2150

    Article  CAS  PubMed  Google Scholar 

  25. Sheehy EJ, Mesallati T, Kelly L, Vinardell T, Buckley CT, Kelly DJ (2015) Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx. Biores Open Access 4:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  CAS  PubMed  Google Scholar 

  28. Cho SW (2015) Role of osteal macrophages in bone metabolism. J Pathol Transl Med 49:102–104

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lassus J, Salo J, Jiranek WA, Santavirta S, Nevalainen J, Matucci-Cerinic M, Horak P, Konttinen Y (1998) Macrophage activation results in bone resorption. Clin Orthop Relat Res 352:7–15

    Article  Google Scholar 

  30. Pacifici R (2013) Osteoimmunology and its implications for transplantation. Am J Transplant 13:2245–2254

    Article  CAS  PubMed  Google Scholar 

  31. J C-L, H C, J.E F (2009) Osteoimmunology—the hidden immune regulation of bone. Autoimmun Rev 8:250–255

    Article  CAS  Google Scholar 

  32. Mori G, D’Amelio P, Faccio R, Brunetti G (2013) The interplay between the bone and the immune system. Clin Dev Immunol 2013:720504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21:673–681

    Article  CAS  PubMed  Google Scholar 

  34. Rodan GA (1997) Bone mass homeostasis and bisphosphonate action. Bone 20:1–4

    Article  CAS  PubMed  Google Scholar 

  35. Frost HM (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188

    CAS  PubMed  Google Scholar 

  36. Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:319–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59:204–208

    Article  CAS  PubMed  Google Scholar 

  38. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38(Suppl 1):S3–S10

    Article  PubMed  Google Scholar 

  39. Kaderly RE (1991) Primary bone healing. Semin Vet Med Surg 6:21–25

    CAS  Google Scholar 

  40. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143

    Article  CAS  PubMed  Google Scholar 

  41. Shapiro F (1988) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 70:1067–1081

    Article  CAS  PubMed  Google Scholar 

  42. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84:1093–1110

    Article  PubMed  Google Scholar 

  43. Morshed S (2014) Current options for determining fracture union. Adv Med 2014:708574

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520

    Article  CAS  PubMed  Google Scholar 

  45. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, Einhorn TA (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014

    Article  CAS  PubMed  Google Scholar 

  46. Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K (2017) The haematoma and its role in bone healing. J Exp Orthop 4:5. Epub 2017 Feb 7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T (2011) Systemic inflammation and fracture healing. J Leukoc Biol 89:669–673

    Article  CAS  PubMed  Google Scholar 

  48. Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS (2010) Multiple roles for CCR2 during fracture healing. Dis Model Mech 3:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoff P, Maschmeyer P, Gaber T, Schutze T, Raue T, Schmidt-Bleek K, Dziurla R, Schellmann S, Lohanatha FL, Rohner E, Ode A, Burmester GR, Duda GN, Perka C, Buttgereit F (2013) Human immune cells’ behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol 10:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu Z, Wang G, Dunstan CR, Zreiqat H (2012) Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev 21:2420–2429

    Article  CAS  PubMed  Google Scholar 

  51. Karnes JM, Daffner SD, Watkins CM (2015) Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 78:87–93

    Article  CAS  PubMed  Google Scholar 

  52. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC (1995) The expression of cytokine activity by fracture callus. J Bone Miner Res 10:1272–1281

    Article  CAS  PubMed  Google Scholar 

  53. Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, Shim J, Hameed M, Healey JH, Bostrom MP, Landau DA, Greenblatt MB (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  55. Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564

    Article  CAS  PubMed  Google Scholar 

  56. Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100

    Article  PubMed  PubMed Central  Google Scholar 

  57. Melnyk M, Henke T, Claes L, Augat P (2008) Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg 128:1159–1165

    Article  PubMed  Google Scholar 

  58. Grundnes O, Reikeras O (1992) Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. Acta Orthop Scand 63:487–491

    Article  CAS  PubMed  Google Scholar 

  59. Bielby R, Jones E, McGonagle D (2007) The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38(Suppl 1):S26–S32

    Article  PubMed  Google Scholar 

  60. Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumunzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, Geissler S, Heschel I, Duda GN (2018) A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun 9:4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    Article  CAS  PubMed  Google Scholar 

  62. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, Lowik CW (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143:1545–1553

    Article  CAS  PubMed  Google Scholar 

  63. Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466

    Article  CAS  PubMed  Google Scholar 

  64. Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25

    Article  PubMed  Google Scholar 

  65. Clines GA (2010) Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis. Curr Opin Organ Transplant 15:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  66. Colnot C, Huang S, Helms J (2006) Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. Biochem Biophys Res Commun 350:557–561

    Article  CAS  PubMed  Google Scholar 

  67. Rumi MN, Deol GS, Singapuri KP, Pellegrini VD Jr (2005) The origin of osteoprogenitor cells responsible for heterotopic ossification following hip surgery: an animal model in the rabbit. J Orthop Res 23:34–40

    Article  PubMed  Google Scholar 

  68. Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96:930–938

    Article  CAS  PubMed  Google Scholar 

  69. Feng X, Teitelbaum SL (2013) Osteoclasts: new insights. Bone Res 1:11–26

    Article  CAS  PubMed  Google Scholar 

  70. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  72. Kodama H, Nose M, Niida S, Yamasaki A (1991) Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med 173:1291–1294

    Article  CAS  PubMed  Google Scholar 

  73. Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. J Am Acad Orthop Surg 20:273–282

    Article  PubMed  Google Scholar 

  74. Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P 3rd, Sprague S, Schemitsch EH (2002) A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma 16:562–566

    Article  PubMed  Google Scholar 

  75. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Puschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25:305–312

    Article  CAS  PubMed  Google Scholar 

  76. Feitosa Dda S, Bezerra Bde B, Ambrosano GM, Nociti FH, Casati MZ, Sallum EA, de Toledo S (2008) Thyroid hormones may influence cortical bone healing around titanium implants: a histometric study in rats. J Periodontol 79:881–887

    Article  CAS  PubMed  Google Scholar 

  77. Duarte PM, Cesar Neto JB, Goncalves PF, Sallum EA, Nociti J (2003) Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent 12:340–346

    Article  PubMed  Google Scholar 

  78. Zura R, Kaste SC, Heffernan MJ, Accousti WK, Gargiulo D, Wang Z, Steen RG (2018) Risk factors for nonunion of bone fracture in pediatric patients: an inception cohort study of 237,033 fractures. Medicine (Baltimore) 97:e11691

    Article  Google Scholar 

  79. Yan W, Li X (2013) Impact of diabetes and its treatments on skeletal diseases. Front Med 7:81–90

    Article  PubMed  Google Scholar 

  80. Gong Z, Muzumdar RH (2012) Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012:320482

    Article  PubMed  PubMed Central  Google Scholar 

  81. Moseley KF (2012) Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes 19:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  83. Graves DT, Kayal RA (2008) Diabetic complications and dysregulated innate immunity. Front Biosci 13:1227–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, Petrov S, Alawi F, Graves DT (2012) Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J 26:1423–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alblowi J, Tian C, Siqueira MF, Kayal RA, McKenzie E, Behl Y, Gerstenfeld L, Einhorn TA, Graves DT (2013) Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone 53:294–300

    Article  CAS  PubMed  Google Scholar 

  86. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS (2012) Patient-related risk factors for fracture-healing complications in the United Kingdom general practice research database. Acta Orthop 83:653–660

    Article  PubMed  PubMed Central  Google Scholar 

  87. Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nasrallah R, Laneuville O, Ferguson S, Hebert RL (2001) Effect of COX-2 inhibitor NS-398 on expression of PGE2 receptor subtypes in M-1 mouse CCD cells. Am J Physiol Renal Physiol 281:F123–F132

    Article  CAS  PubMed  Google Scholar 

  89. Welting TJ, Caron MM, Emans PJ, Janssen MP, Sanen K, Coolsen MM, Voss L, Surtel DA, Cremers A, Voncken JW, van Rhijn LW (2011) Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification. Eur Cell Mater 22:420–436; discussion 436–7

    Article  CAS  PubMed  Google Scholar 

  90. Burd TA, Hughes MS, Anglen JO (2003) Heterotopic ossification prophylaxis with indomethacin increases the risk of long-bone nonunion. J Bone Joint Surg Br 85:700–705

    Article  CAS  PubMed  Google Scholar 

  91. Bhattacharyya T, Levin R, Vrahas MS, Solomon DH (2005) Nonsteroidal antiinflammatory drugs and nonunion of humeral shaft fractures. Arthritis Rheum 53:364–367

    Article  CAS  PubMed  Google Scholar 

  92. Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P (2000) Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br 82:655–658

    Article  CAS  PubMed  Google Scholar 

  93. Dodwell ER, Latorre JG, Parisini E, Zwettler E, Chandra D, Mulpuri K, Snyder B (2010) NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif Tissue Int 87:193–202

    Article  CAS  PubMed  Google Scholar 

  94. Pearson RG, Clement RG, Edwards KL, Scammell BE (2016) Do smokers have greater risk of delayed and non-union after fracture, osteotomy and arthrodesis? A systematic review with meta-analysis. BMJ Open 6:e010303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bornmyr S, Svensson H (1991) Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol 11:135–141

    Article  CAS  PubMed  Google Scholar 

  96. Mosely LH, Finseth F (1977) Cigarette smoking: impairment of digital blood flow and wound healing in the hand. Hand 9:97–101

    Article  CAS  PubMed  Google Scholar 

  97. Sorensen LT, Jorgensen S, Petersen LJ, Hemmingsen U, Bulow J, Loft S, Gottrup F (2009) Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis. J Surg Res 152:224–230

    Article  CAS  PubMed  Google Scholar 

  98. Fang MA, Frost PJ, Iida-Klein A, Hahn TJ (1991) Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells. Bone 12:283–286

    Article  CAS  PubMed  Google Scholar 

  99. Leow YH, Maibach HI (1998) Cigarette smoking, cutaneous vasculature, and tissue oxygen. Clin Dermatol 16:579–584

    Article  CAS  PubMed  Google Scholar 

  100. Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR (2000) The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976) 25:2608–2615

    Article  CAS  Google Scholar 

  101. Andersen T, Christensen FB, Laursen M, Hoy K, Hansen ES, Bunger C (2001) Smoking as a predictor of negative outcome in lumbar spinal fusion. Spine (Phila Pa 1976) 26:2623–2628

    Article  CAS  Google Scholar 

  102. Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE (2004) Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am 86-A:1359–1365

    Article  Google Scholar 

  103. Rosenberg GA, Sferra JJ (2000) Treatment strategies for acute fractures and nonunions of the proximal fifth metatarsal. J Am Acad Orthop Surg 8:332–338

    Article  CAS  PubMed  Google Scholar 

  104. Kozin SH (2001) Incidence, mechanism, and natural history of scaphoid fractures. Hand Clin 17:515–524

    CAS  PubMed  Google Scholar 

  105. DiGiovanni CW (2004) Fractures of the navicular. Foot Ankle Clin 9:25–63

    Article  PubMed  Google Scholar 

  106. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res (355 Suppl):S132–47, 355S

    Google Scholar 

  107. Mouzopoulos G, Kanakaris NK, Kontakis G, Obakponovwe O, Townsend R, Giannoudis PV (2011) Management of bone infections in adults: the surgeon’s and microbiologist’s perspectives. Injury 42(Suppl 5):S18–S23

    Article  PubMed  Google Scholar 

  108. Lowy FD, Hammer SM (1983) Staphylococcus epidermidis infections. Ann Intern Med 99:834–839

    Article  CAS  PubMed  Google Scholar 

  109. Court-Brown CM, Keating JF, McQueen MM (1992) Infection after intramedullary nailing of the tibia. Incidence and protocol for management. J Bone Joint Surg Br 74:770–774

    Article  CAS  PubMed  Google Scholar 

  110. Roussignol X, Sigonney G, Potage D, Etienne M, Duparc F, Dujardin F (2015) Secondary nailing after external fixation for tibial shaft fracture: risk factors for union and infection. A 55 case series. Orthop Traumatol Surg Res 101:89–92

    Article  CAS  PubMed  Google Scholar 

  111. Chen AT, Vallier HA (2016) Noncontiguous and open fractures of the lower extremity: epidemiology, complications, and unplanned procedures. Injury 47:742–747

    Article  PubMed  Google Scholar 

  112. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27:61–5.e1

    Article  PubMed  Google Scholar 

  113. Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz S, Chan V, Vail TP, Rubash H, Berry DJ (2015) Comparative epidemiology of revision arthroplasty: failed THA poses greater clinical and economic burdens than failed TKA. Clin Orthop Relat Res 473:2131–2138

    Article  PubMed  Google Scholar 

  114. Martinez-Pastor JC, Macule-Beneyto F, Suso-Vergara S (2013) Acute infection in total knee arthroplasty: diagnosis and treatment. Open Orthop J 7:197–204

    Article  PubMed  PubMed Central  Google Scholar 

  115. Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23:59–72

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22

    Article  CAS  PubMed  Google Scholar 

  118. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  119. Claro T, Widaa A, O’Seaghdha M, Miajlovic H, Foster TJ, O’Brien FJ, Kerrigan SW (2011) Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One 6:e18748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Widaa A, Claro T, Foster TJ, O’Brien FJ, Kerrigan SW (2012) Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One 7:e40586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mendoza Bertelli A, Delpino MV, Lattar S, Giai C, Llana MN, Sanjuan N, Cassat JE, Sordelli D, Gomez MI (2016) Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. Biochim Biophys Acta 1862:1975–1983

    Article  CAS  PubMed  Google Scholar 

  122. Shinji H, Yosizawa Y, Tajima A, Iwase T, Sugimoto S, Seki K, Mizunoe Y (2011) Role of fibronectin-binding proteins A and B in in vitro cellular infections and in vivo septic infections by Staphylococcus aureus. Infect Immun 79:2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, Nair SP (2001) Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69:2872–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bost KL, Bento JL, Ellington JK, Marriott I, Hudson MC (2000) Induction of colony-stimulating factor expression following Staphylococcus or Salmonella interaction with mouse or human osteoblasts. Infect Immun 68:5075–5083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bost KL, Ramp WK, Nicholson NC, Bento JL, Marriott I, Hudson MC (1999) Staphylococcus aureus infection of mouse or human osteoblasts induces high levels of interleukin-6 and interleukin-12 production. J Infect Dis 180:1912–1920

    Article  CAS  PubMed  Google Scholar 

  126. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35:280–288

    Article  CAS  PubMed  Google Scholar 

  127. Trouillet-Assant S, Lelievre L, Martins-Simoes P, Gonzaga L, Tasse J, Valour F, Rasigade JP, Vandenesch F, Muniz Guedes RL, Ribeiro de Vasconcelos AT, Caillon J, Lustig S, Ferry T, Jacqueline C, Loss de Morais G, Laurent F (2016) Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol 18:1405–1414

    Article  CAS  PubMed  Google Scholar 

  128. Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, Marvel J, Ferry T, Vandenesch F, Jurdic P, Laurent F (2015) Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 211:571–581

    Article  CAS  PubMed  Google Scholar 

  129. Kavanagh N, Ryan EJ, Widaa A, Sexton G, Fennell J, O’Rourke S, Cahill KC, Kearney CJ, O’Brien FJ, Kerrigan SW (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31(2). https://doi.org/10.1128/CMR.00084-17. Print 2018 Apr

  130. Flammier S, Rasigade JP, Badiou C, Henry T, Vandenesch F, Laurent F, Trouillet-Assant S (2016) Human monocyte-derived osteoclasts are targeted by staphylococcal pore-forming toxins and superantigens. PLoS One 11:e0150693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jin T, Zhu YL, Li J, Shi J, He XQ, Ding J, Xu YQ (2013) Staphylococcal protein A, Panton-Valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cell Physiol Biochem 32:322–333

    Article  CAS  PubMed  Google Scholar 

  132. Badiou C, Dumitrescu O, George N, Forbes AR, Drougka E, Chan KS, Ramdani-Bouguessa N, Meugnier H, Bes M, Vandenesch F, Etienne J, Hsu LY, Tazir M, Spiliopoulou I, Nimmo GR, Hulten KG, Lina G (2010) Rapid detection of Staphylococcus aureus Panton-Valentine leukocidin in clinical specimens by enzyme-linked immunosorbent assay and immunochromatographic tests. J Clin Microbiol 48:1384–1390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Lackington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lackington, W.A., Thompson, K. (2020). Fracture Healing and Progress Towards Successful Repair. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_10

Download citation

Publish with us

Policies and ethics