Skip to main content

Advances in Antimicrobial and Osteoinductive Biomaterials

  • Chapter
  • First Online:
Racing for the Surface

Abstract

The enormous growing problem with antibiotic resistance in pathogenic microbes is one of the greatest threats we are facing today. In the context of orthopedic applications, infections also lead to the limited healing ability of infected and defected bone. Generally, these problems are treated with a load of antibiotics or surgical intervention. Therefore, having antibacterial properties integrated with a biomaterial would reduce the time of healing and treatment, amount of antibiotic needed, and total cost. Currently, there exists several strategies and materials with the potential of tackling these challenges. Some materials with antibacterial properties currently employed are silver nanoparticles (AgNPs), cerium oxide nanoparticles (CeO2NPs), selenium nanoparticles (SeNPs), copper nanoparticles (CuNPs), antimicrobial peptides (AMPs), biopolymers (such as chitosan), and carbon nanostructures. On the other hand, osteoinductive and osteoconductive materials are important to promote bone healing and regeneration. Within this framework, materials which have been employed widely are bioactive glasses (BG), calcium phosphates (CaPs) (e.g., hydroxyapatite (HA), tricalcium β-phosphate (β-TCP), and biphasic calcium phosphate (BCP)), peptides, growth factors, and other elements (e.g., magnesium (Mg), zinc (Zn), strontium (Sr), silicon (Si), selenium (Se), and Cu, to name a few). Some of the current technological solutions that have been employed are, for instance, the use of a co-delivery system, where both the antibacterial and the osteoinducing agents are delivered from the same delivery system. However, this approach requires overcoming challenges with local delivery in a sustained and prolonged way, thus avoiding tissue toxicity. To address these challenges and promote novel biomaterials with dual action, sophisticated thinking and approaches have to be employed. For this, it is of the utmost importance to have a solid fundamental understanding of current technologies, bacteria behavior and response to treatments, and also a correlation between the material of use, the host tissue and bacteria. We hope by highlighting these aspects, we will promote the invention of the next generation of smart biomaterials with dual action ability to both inhibit infection and promote tissue growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas MV, Puleo DA (2011) Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res 90(9):1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moriarty TF, Kuehl R, Coenye T, Metsemakers W-J, Morgenstern M, Schwarz EM et al (2016) Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 1(4):89–99

    Article  PubMed  PubMed Central  Google Scholar 

  3. Winkler H (2017) Treatment of chronic orthopaedic infection. EFORT Open Rev 2(5):110–116

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2(4):176–194

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X et al (2018) Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 6(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G (2016) Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci 17(3):334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Raphel J, Holodniy M, Goodman SB, Heilshorn SC (2016) Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84:301–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G et al (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guisbiers G, Wang Q, Khachatryan E, Mimun L, Mendoza-Cruz R, Larese-Casanova P et al (2016) Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int J Nanomedicine 11:3731–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10(9):1066

    Article  PubMed Central  CAS  Google Scholar 

  12. Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coppo E, Marchese A (2014) Antibacterial activity of polyphenols. Curr Pharm Biotechnol 15(4):380–390

    Article  CAS  PubMed  Google Scholar 

  14. Lee E, Song Y, Lee S (2014) Antimicrobial property and biodegradability of lignin nanofibers. Master’s thesis, Yonsei University, Republic of Korea

    Google Scholar 

  15. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30(12):3875–3883

    Article  CAS  Google Scholar 

  16. Reddy K, Yedery R, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  17. Habibovic P, Barralet J (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 7(8):3013–3026

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Zhu C, Wu Y, Ye D, Wang S, Zou D et al (2014) VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 27(12):1–11

    PubMed  Google Scholar 

  19. Hench LL, Splinter RJ, Allen W, Greenlee T (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141

    Article  Google Scholar 

  20. Tomás H, Alves CS, Rodrigues J (2018) Laponite®: a key nanoplatform for biomedical applications? Nanomedicine 14(7):2407–2420

    Article  PubMed  CAS  Google Scholar 

  21. Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV (2016) The role of peptides in bone healing and regeneration: a systematic review. BMC Med 14(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science—an introduction to materials in medicine, 2nd edn. Elsevier, New York

    Google Scholar 

  23. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–SS91

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G et al (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hench LL (1998) Bioceram J Am Ceram Soc 81(7):1705–1728

    Article  CAS  Google Scholar 

  26. Rea S, Bonfield W (2004) Biocomposites for medical applications. J Australas Ceram Soc 40(1):43–57

    CAS  Google Scholar 

  27. Hench L (1980) Biomaterials. Science 208(4446):826–831

    Article  CAS  PubMed  Google Scholar 

  28. Ratner BD, Hoffman AS, Yaszemski MJ, Lemons JE, Schoen FJ (2012) Biomaterials science : an introduction to materials in medicine. Elsevier Science & Technology, San Diego

    Google Scholar 

  29. Uludağ H (2014) Grand challenges in biomaterials. Front Bioeng Biotechnol 2:43

    PubMed  PubMed Central  Google Scholar 

  30. Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86(7):1541–1558

    Article  PubMed  Google Scholar 

  31. Kowalski PS, Bhattacharya C, Afewerki S, Langer R (2018) Smart biomaterials: recent advances and future directions. ACS Biomater Sci Eng 4(11):3809–3817

    Article  CAS  PubMed  Google Scholar 

  32. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4):300–311

    Article  CAS  PubMed  Google Scholar 

  33. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18(1):10–18

    Article  CAS  PubMed  Google Scholar 

  34. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  CAS  PubMed  Google Scholar 

  35. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R (1993) Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 42(6):716–723

    Article  CAS  PubMed  Google Scholar 

  36. Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, Mikos AG (2008) Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43(5):931–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whang K, Healy K, Elenz D, Nam E, Tsai D, Thomas C et al (1999) Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 5(1):35–51

    Article  CAS  PubMed  Google Scholar 

  38. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  39. García JR, García AJ (2016) Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Delivery Transl Res 6(2):77–95

    Article  CAS  Google Scholar 

  40. Bielby RC, Christodoulou IS, Pryce RS, Radford WJ, Hench LL, Polak JM (2004) Time- and concentration-dependent effects of dissolution products of 58S Sol–gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 10:1018–1026

    Article  CAS  PubMed  Google Scholar 

  41. Bielby RC, Pryce RS, Hench LL, Polak JM (2005) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol–gel glass. Tissue Eng 11(3–4):479–488

    Article  CAS  PubMed  Google Scholar 

  42. Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371

    Article  CAS  PubMed  Google Scholar 

  43. Karp JM, Shoichet MS, Davies JE (2003) Bone formation on two-dimensional poly (DL-lactide-co-glycolide)(PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 64(2):388–396

    Article  PubMed  CAS  Google Scholar 

  44. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE (1999) Cartilage tissue engineering: current limitations and solutions. Clin Orthop Relat Res 367:S176–SS85

    Article  Google Scholar 

  45. Hutmacher DW, Sittinger M (2003) Periosteal cells in bone tissue engineering. Tissue Eng 9(Suppl 1):S45–S64

    Article  CAS  PubMed  Google Scholar 

  46. De Miguel MP, Fuentes-Julián S, Alcaina Y (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev 6(4):633–649

    Article  Google Scholar 

  47. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  48. Hubbell JA, Thomas SN, Swartz MA (2009) Materials engineering for immunomodulation. Nature 462(7272):449–460

    Article  CAS  PubMed  Google Scholar 

  49. Quaile A (2012) Infections associated with spinal implants. Int Orthop 36(2):451–456

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16(7):397–409

    Article  CAS  PubMed  Google Scholar 

  51. Bose S, Bandyopadhyay A (2017) Materials and devices for bone disorders, 1st edn. Elsevier, Amsterdam, pp 1–560

    Book  Google Scholar 

  52. Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10(1):157

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aranya AK, Pushalkar S, Zhao M, LeGeros RZ, Zhang Y, Saxena D (2017) Antibacterial and bioactive coatings on titanium implant surfaces. J Biomed Mater Res A 105(8):2218–2227

    Article  PubMed Central  CAS  Google Scholar 

  54. Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM (2018) Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 9:2041731418789838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  PubMed  Google Scholar 

  56. Rahman S, Carter P, Bhattarai N (2017) Aloe vera for tissue engineering applications. J Funct Biomater 8(1):6

    Article  PubMed Central  CAS  Google Scholar 

  57. Bansal SS, Kausar H, Vadhanam MV, Ravoori S, Pan J, Rai SN et al (2014) Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats. Cancer Prev Res (Phila) 7(4):456–465

    Article  CAS  Google Scholar 

  58. Pakdel F, Ghasemi S, Babaloo A, Javadzadeh Y, Momeni R, Ghanizadeh M et al (2017) Antibacterial effects of garlic extracts and ziziphora essential oil on bacteria associated with peri-implantitis. J Clin Diagn Res 11(4):ZC16–ZC19

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nichols SP, Schoenfisch MH (2013) Nitric oxide flux-dependent bacterial adhesion and viability at fibrinogen-coated surfaces. Biomater Sci 1(11):1151–1159

    Article  CAS  Google Scholar 

  60. Freitas SC, Correa-Uribe A, Cristina L, Martins M, Pelaez-Vargas A (2018) Self-assembled monolayers for dental implants. Int J Dent 2018:4395460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2(2–3):81–96

    Article  CAS  PubMed  Google Scholar 

  62. Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2):562–569

    Article  CAS  PubMed  Google Scholar 

  63. Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91(1):470–480

    Article  PubMed  CAS  Google Scholar 

  64. Modjarrad K, Ebnesajjad S (2013) Handbook of polymer applications in medicine and medical devices. Elsevier, Amsterdam, pp 1–354

    Google Scholar 

  65. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13(1):24–30

    Article  CAS  Google Scholar 

  66. Wilhelmi M, Haverich A (2013) Functionalized medical implants in the era of personalized medicine. Clin Pract 10(2):119–121

    Article  CAS  Google Scholar 

  67. Qin M, Liu Y, Wang L, Li D, Jin Z, Liu Y et al (2017) Laser metal direct forming of the customized titanium implants. Rare Metal Mater Eng 46(2017):1924–1928

    Google Scholar 

  68. Bosetti M, Fusaro L, Nicolì E, Borrone A, Aprile S, Cannas M (2014) Poly-L-lactide acid-modified scaffolds for osteoinduction and osteoconduction. J Biomed Mater Res Part A 102(10):3531–3539

    Article  CAS  Google Scholar 

  69. Goonoo N, Bhaw-Luximon A (2018) Regenerative medicine: induced pluripotent stem cells and their benefits on accelerated bone tissue reconstruction using scaffolds. J Mater Res 33(11):1573–1591

    Article  CAS  Google Scholar 

  70. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML (2017) Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 83(3):e02508–e02516

    Article  PubMed  PubMed Central  Google Scholar 

  71. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(Suppl 2):S96–S101

    PubMed  PubMed Central  Google Scholar 

  72. Jäger M, Jennissen HP, Dittrich F, Fischer A, Köhling HL (2017) Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials (Basel) 10(11):1302

    Article  PubMed Central  CAS  Google Scholar 

  73. Hatton BD (2015) Antimicrobial coatings for metallic biomaterials. In: Wen C (ed) Surface coating and modification of metallic biomaterials. Woodhead Publishing, Sawston, pp 379–391

    Chapter  Google Scholar 

  74. Betancourt T, Brannon-Peppas L (2006) Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomed 1(4):483–495

    Article  CAS  Google Scholar 

  75. Besinis A, Hadi SD, Le HR, Tredwin C, Handy RD (2017) Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology 11(3):327–338

    Article  CAS  PubMed  Google Scholar 

  76. Tripathy A, Pahal S, Mudakavi RJ, Raichur AM, Varma MM, Sen P (2018) Impact of bioinspired nanotopography on the antibacterial and antibiofilm efficacy of chitosan. Biomacromolecules 19(4):1340–1346

    Article  CAS  PubMed  Google Scholar 

  77. Ercan B, Khang D, Carpenter J, Webster TJ (2013) Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices. Int J Nanomedicine 8(Suppl 1):75–81

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65

    Article  CAS  Google Scholar 

  79. Pandey JK, Swarnkar R, Soumya K, Dwivedi P, Singh MK, Sundaram S et al (2014) Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl Biochem Biotechnol 174(3):1021–1031

    Article  CAS  PubMed  Google Scholar 

  80. O’Neill J (2016) The review on antimicrobial resistance. Tackling drug-resistant infections globally: final report and recommendations

    Google Scholar 

  81. Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10(1):11

    Article  PubMed Central  CAS  Google Scholar 

  83. Alpaslan E, Geilich BM, Yazici H, Webster TJ (2017) pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci Rep 7:45859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15(7):11878–11921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gupta A, Landis RF, Li C-H, Schnurr M, Das R, Lee Y-W et al (2018) Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms. J Am Chem Soc 140(38):12137–12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  87. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354

    Article  CAS  Google Scholar 

  88. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  CAS  PubMed  Google Scholar 

  89. Qin H, Zhu C, An Z, Jiang Y, Zhao Y, Wang J et al (2014) Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine 9:2469–2478

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mahmood M, Li Z, Casciano D, Khodakovskaya MV, Chen T, Karmakar A et al (2011) Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation. J Cell Mol Med 15(11):2297–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A et al (2018) The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics (Basel) 7(3):67

    Article  CAS  Google Scholar 

  92. Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555

    Article  PubMed  PubMed Central  Google Scholar 

  93. Huma Z-e, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S et al (2018) Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega 3(12):16721–16727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71

    Article  PubMed  CAS  Google Scholar 

  95. Pareek V, Gupta R, Panwar J (2018) Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C 90(11):739–749

    Article  CAS  Google Scholar 

  96. Patil MP, Kim G-D (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101(1):79–92

    Article  CAS  PubMed  Google Scholar 

  97. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q et al (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 13:2107–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stolzoff M, Wang S, Webster T (eds) (2016) Efficacy and mechanism of selenium nanoparticles as antibacterial agents. In: Front. bioeng. biotechnol. conference abstract: 10th world biomaterials congress. https://doi.org/10.3389/conf.FBIOE.2016.01.01826

  99. Srivastava N, Mukhopadhyay M (2015) Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng 38(9):1723–1730

    Article  CAS  PubMed  Google Scholar 

  100. Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139

    Article  CAS  PubMed  Google Scholar 

  101. Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J (2016) Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater 30:397–407

    Article  CAS  PubMed  Google Scholar 

  102. Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res Part A 100(12):3205–3210

    Article  CAS  Google Scholar 

  103. Farias IAP, dos Santos CCL, Sampaio FC (2018) Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: a systematic review. Biomed Res Int 2018:1

    Article  CAS  Google Scholar 

  104. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C et al (2018) Antibacterial hydrogels. Adv Sci 5(5):1700527

    Article  CAS  Google Scholar 

  105. Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3(12):1969–1985

    Article  CAS  PubMed  Google Scholar 

  106. Yang Y, Cai Z, Huang Z, Tang X, Zhang X (2018) Antimicrobial cationic polymers: from structural design to functional control. Polym J 50(1):33–44

    Article  CAS  Google Scholar 

  107. Du H, Wang Y, Yao X, Luo Q, Zhu W, Li X et al (2016) Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 7(36):5620–5624

    Article  CAS  Google Scholar 

  108. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    Article  CAS  PubMed  Google Scholar 

  109. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  110. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    Article  CAS  Google Scholar 

  111. Cheah WY, Show P-L, Ng IS, Lin G-Y, Chiu C-Y, Chang Y-K (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126:569–577

    Article  CAS  PubMed  Google Scholar 

  112. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res 341(12):2098–2107

    Article  CAS  PubMed  Google Scholar 

  113. Sajomsang W, Gonil P, Tantayanon S (2009) Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. Int J Biol Macromol 44(5):419–427

    Article  CAS  PubMed  Google Scholar 

  114. Wang D (2016) Osteoinductive and antibacterial biomaterials for bone tissue engineering. Dissertation, Vrije Universiteit Amsterdam

    Google Scholar 

  115. Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247

    Article  CAS  Google Scholar 

  116. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  CAS  PubMed  Google Scholar 

  117. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2(2):186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eckhard LH, Sol A, Abtew E, Shai Y, Domb AJ, Bachrach G et al (2014) Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis. PLoS One 9(10):e109413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Chen Q, Ma Z, Liu G, Wei H, Xie X (2016) Antibacterial activity of cationic cyclen-functionalized fullerene derivatives: membrane stress. Dig J Nanomater Bios 11:753–761

    Google Scholar 

  120. Medeiros SJ, Oliveira AM, de Carvalho JO, Ricci R, Martins MCC, Rodrigues BV et al (2018) Nanohydroxyapatite/graphene nanoribbons nanocomposites induce in vitro osteogenesis and promote in vivo bone neoformation. ACS Biomater Sci Eng 4(5):1580–1590

    Google Scholar 

  121. Siqueira IA, Corat MAF, Cavalcanti BN, Neto WAR, Martin AA, Bretas RES et al (2015) In vitro and in vivo studies of novel poly (D, L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces 7(18):9385–9398

    Article  CAS  PubMed  Google Scholar 

  122. Van Noorden R (2011) Chemistry: the trials of new carbon. Nature 469(7328):14–16

    Article  PubMed  CAS  Google Scholar 

  123. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Suciu S et al (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74(19):3467–3479

    Article  CAS  PubMed  Google Scholar 

  124. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Van Tassel PR (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale 2(9):1789–1794

    Article  CAS  PubMed  Google Scholar 

  125. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23

    CAS  Google Scholar 

  126. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim J-H (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914

    Article  CAS  Google Scholar 

  127. Ricci R, Leite N, Da-Silva N, Pacheco-Soares C, Canevari R, Marciano F et al (2017) Graphene oxide nanoribbons as nanomaterial for bone regeneration: effects on cytotoxicity, gene expression and bactericidal effect. Mater Sci Eng C 78:341–348

    Article  CAS  Google Scholar 

  128. Zhao C, Deng B, Chen G, Lei B, Hua H, Peng H et al (2016) Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res 9(4):963–973

    Article  CAS  Google Scholar 

  129. Rodrigues BV, Leite NC, das Neves Cavalcanti B, da Silva NS, Marciano FR, Corat EJ et al (2016) Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. Int J Nanomedicine 11:2569–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lochab B, Shukla S, Varma IK (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4(42):21712–21752

    Article  CAS  Google Scholar 

  131. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306

    Article  CAS  PubMed  Google Scholar 

  132. Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34(3):1629–1634

    Article  CAS  Google Scholar 

  133. Erakovic S, Jankovic A, Tsui GCP, Tang C-Y, Miskovic-Stankovic V, Stevanovic T (2014) Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition. Int J Mol Sci 15(7):12294–12322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Chung K-T, Wong TY, Wei C-I, Huang Y-W, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464

    Article  CAS  PubMed  Google Scholar 

  135. Park JH, Choi S, Moon HC, Seo H, Kim JY, Hong S-P et al (2017) Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci Rep 7(1):6980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Sarjit A, Wang Y, Dykes GA (2015) Antimicrobial activity of gallic acid against thermophilic campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol 46:227–233

    Article  CAS  PubMed  Google Scholar 

  137. Arbenz A, Averous L (2015) Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 17(5):2626–2646

    Article  CAS  Google Scholar 

  138. Redondo LM, Chacana PA, Dominguez JE, Fernandez Miyakawa ME (2014) Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol 5:118

    Article  PubMed  PubMed Central  Google Scholar 

  139. Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23(2):174–181

    Article  CAS  PubMed  Google Scholar 

  140. Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G (2017) Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Compr Rev Food Sci Food Saf 16(6):1243–1268

    Article  CAS  PubMed  Google Scholar 

  141. Ahn BK (2017) Perspectives on mussel-inspired wet adhesion. J Am Chem Soc 139(30):10166–10171

    Article  CAS  PubMed  Google Scholar 

  142. Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med 1(1):25–32

    Article  CAS  PubMed  Google Scholar 

  143. Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z et al (2017) Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials 147:133–144

    Article  CAS  PubMed  Google Scholar 

  144. Barradas A, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21:407–429

    Article  CAS  PubMed  Google Scholar 

  145. Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32(36):9622–9629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25(11):2111–2121

    Article  CAS  PubMed  Google Scholar 

  147. LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753

    Article  PubMed  CAS  Google Scholar 

  148. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262

    Article  CAS  Google Scholar 

  150. Caballero SSR, Saiz E, Montembault A, Tadier S, Maire E, David L et al (2019) 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization. J Mater Sci Mater Med 30(1):6

    Article  CAS  Google Scholar 

  151. Iviglia G, Morra M, Cassinelli C, Torre E, Rodriguez Y, Baena R (2018) New collagen-coated calcium phosphate synthetic bone filler (Synergoss®): a comparative surface analysis. Int J Appl Ceram Technol 15(4):910–920

    Article  CAS  Google Scholar 

  152. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gao X, Song J, Ji P, Zhang X, Li X, Xu X et al (2016) Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces 8(5):3499–3515

    Article  CAS  PubMed  Google Scholar 

  154. Li H, Chang J (2005) pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Compos Sci Technol 65(14):2226–2232

    Article  CAS  Google Scholar 

  155. Stevanović M, Filipović N, Djurdjević J, Lukić M, Milenković M, Boccaccini A (2015) 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly (lactide-co-glycolide)/selenium particles: processing, evaluation and antibacterial activity. Colloids Surf B Biointerfaces 132:208–215

    Article  PubMed  CAS  Google Scholar 

  156. Li A, Ren H, Cui Y, Wang C, Zhou X, Lin H et al (2017) Detailed structure of a new bioactive glass composition for the design of bone repair materials. J Non-Cryst Solids 475:10–14

    Article  CAS  Google Scholar 

  157. Sarin S, Rekhi A (2016) Bioactive glass: a potential next generation biomaterial. SRM J Res Dent Sci 7(1):27–32

    Article  Google Scholar 

  158. El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28

    Article  CAS  PubMed  Google Scholar 

  159. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Article  CAS  PubMed  Google Scholar 

  160. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425

    Article  CAS  PubMed  Google Scholar 

  161. Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M (2018) Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol 36(4):430–444

    Article  CAS  PubMed  Google Scholar 

  162. Jones JR, Brauer DS, Hupa L, Greenspan DC (2016) Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glas Sci 7(4):423–434

    Article  CAS  Google Scholar 

  163. Sheikhi A, Afewerki S, Oklu R, Gaharwar AK, Khademhosseini A (2018) Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomater Sci 6:2073–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  CAS  PubMed  Google Scholar 

  165. Valliant EM, Romer F, Wang D, McPhail DS, Smith ME, Hanna JV et al (2013) Bioactivity in silica/poly (γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater 9(8):7662–7671

    Article  CAS  PubMed  Google Scholar 

  166. Catauro M, Bollino F, Papale F (2018) Surface modifications of titanium implants by coating with bioactive and biocompatible poly (ε-caprolactone)/SiO2 hybrids synthesized via sol–gel. Arab J Chem 11(7):1126–1133

    Article  CAS  Google Scholar 

  167. Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 14:175–184

    Article  CAS  PubMed  Google Scholar 

  168. Webster TJ, Ergun C, Doremus RH, Bizios R (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J Biomed Mater Res 59(2):312–317

    Article  CAS  PubMed  Google Scholar 

  169. Querido W, Rossi AL, Farina M (2016) The effects of strontium on bone mineral: a review on current knowledge and microanalytical approaches. Micron 80:122–134

    Article  CAS  PubMed  Google Scholar 

  170. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991

    Article  CAS  PubMed  Google Scholar 

  171. Lemaire-Hurtel A-S, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284(1):575–584

    Article  CAS  Google Scholar 

  172. Fiorilli S, Molino G, Pontremoli C, Iviglia G, Torre E, Cassinelli C et al (2018) The incorporation of strontium to improve bone-regeneration ability of mesoporous bioactive glasses. Materials 11(5):678

    Article  PubMed Central  CAS  Google Scholar 

  173. Kannan S, Pina S, Ferreira JMF (2006) Formation of strontium-stabilized β-tricalcium phosphate from calcium-deficient apatite. J Am Ceram Soc 89(10):3277–3280

    Article  CAS  Google Scholar 

  174. Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Sayahpour FA, Baharvand H (2019) Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res B Appl Biomater 107(1):50–64

    Article  CAS  PubMed  Google Scholar 

  175. Zeng H, Cao J (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H et al (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235

    Article  CAS  PubMed  Google Scholar 

  177. Liu H, Bian W, Liu S, Huang K (2012) Selenium protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation by suppressing oxidative stress and ERK signaling pathway. Biol Trace Elem Res 150(1):441–450

    Article  PubMed  CAS  Google Scholar 

  178. Dollwet HHA, Sorenson JRJ (1988) Roles of copper in bone maintenance and healing. Biol Trace Elem Res 18(1):39–48

    Article  CAS  PubMed  Google Scholar 

  179. Shi M, Chen Z, Farnaghi S, Friis T, Mao X, Xiao Y et al (2016) Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater 30:334–344

    Article  CAS  PubMed  Google Scholar 

  180. Li X, He Q, Shi J (2014) Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano 8(2):1309–1320

    Article  CAS  PubMed  Google Scholar 

  181. Vukicevic S, Sampath KT (2002) Bone morphogenetic proteins: from laboratory to clinical practice, 1st edn. Birkhäuser, Basel

    Book  Google Scholar 

  182. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C (2018) Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180:143–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lombardi G, Di CS, Rubino M, Faggiano A, Vuolo L, Guerra E et al (2011) The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Investig 34(7 Suppl):18–22

    CAS  Google Scholar 

  184. Jung RE, Hämmerle CH, Kokovic V, Weber FE (2007) Bone regeneration using a synthetic matrix containing a parathyroid hormone peptide combined with a grafting material. Int J Oral Maxillofac Implants 22(2):258–266

    PubMed  Google Scholar 

  185. Johnson CT, García AJ (2015) Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 43(3):515–528

    Article  PubMed  Google Scholar 

  186. Salles GN, Calió ML, Afewerki S, Pacheco-Soares C, Porcionatto M, Hölscher C et al (2018) Prolonged drug-releasing fibers attenuate Alzheimer’s disease-like pathogenesis. ACS Appl Mater Interfaces 10(43):36693–36702

    Article  CAS  PubMed  Google Scholar 

  187. Lobo AO, Afewerki S, de Paula MMM, Ghannadian P, Marciano FR, Zhang YS et al (2018) Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomedicine 13:7891–7903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. De Paula MMM, Bassous NJ, Afewerki S, Harb SV, Ghannadian P, Marciano FR et al (2018) Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS One 13(12):e0209386

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wang Y, Jiang Y, Zhang Y, Wen S, Wang Y, Zhang H (2019) Dual functional electrospun core-shell nanofibers for anti-infective guided bone regeneration membranes. Mater Sci Eng C 98:134–139

    Article  CAS  Google Scholar 

  190. Shi L, Zhang W, Yang K, Shi H, Li D, Liu J et al (2015) Antibacterial and osteoinductive capability of orthopedic materials via cation–π interaction mediated positive charge. J Mater Chem B 3(5):733–737

    Article  CAS  PubMed  Google Scholar 

  191. Yang G, Yang H, Shi L, Wang T, Zhou W, Zhou T et al (2018) Enhancing corrosion resistance, osteoinduction, and antibacterial properties by Zn/Sr additional surface modification of magnesium alloy. ACS Biomater Sci Eng 4(12):4289–4298

    Article  CAS  PubMed  Google Scholar 

  192. Kumar S, Bose S, Chatterjee K (2014) Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly(ε-caprolactone) composites. RSC Adv 4(37):19086–19098

    Article  CAS  Google Scholar 

  193. Zhang Y, Dong C, Yang S, Chiu T-W, Wu J, Xiao K et al (2018) Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect. J Biomater Appl 32(9):1289–1299

    Article  CAS  PubMed  Google Scholar 

  194. Qian X, Qing F, Jun O, Hong S (2014) Construction of drug-loaded titanium implants via layer-by-layer electrostatic self-assembly. West China J Stomatol 32:537–541

    Google Scholar 

  195. Xu C, Lei C, Meng L, Wang C, Song Y (2012) Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res B Appl Biomater 100(5):1435–1443

    Article  PubMed  CAS  Google Scholar 

  196. Li W, Ding Y, Yu S, Yao Q, Boccaccini AR (2015) Multifunctional chitosan-45S5 bioactive glass-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microsphere composite membranes for guided tissue/bone regeneration. ACS Appl Mater Interfaces 7(37):20845–20854

    Article  CAS  PubMed  Google Scholar 

  197. Zhou P, Xia Y, Cheng X, Wang P, Xie Y, Xu S (2014) Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials 35(38):10033–10045

    Article  CAS  PubMed  Google Scholar 

  198. Nasajpour A, Ansari S, Rinoldi C, Shahrokhi Rad A, Aghaloo T, Ryon Shin S et al (2018) A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Funct Mater 28:1703437

    Article  CAS  Google Scholar 

  199. Wei C-K, Ding S-J (2017) Dual-functional bone implants with antibacterial ability and osteogenic activity. J Mater Chem B 5(10):1943–1953

    Article  CAS  PubMed  Google Scholar 

  200. Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, Bader R et al (2017) Copper as an alternative antimicrobial coating for implants—an in vitro study. World J Transplant 7(3):193–202

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  202. Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R et al (2010) The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31(35):9293–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS et al (2012) The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33(34):8745–8756

    Article  CAS  PubMed  Google Scholar 

  204. Stevanović M, Uskoković V, Filipović M, Škapin SD, Uskoković D (2013) Composite PLGA/AgNpPGA/AscH nanospheres with combined osteoinductive, antioxidative, and antimicrobial activities. ACS Appl Mater Interfaces 5(18):9034–9042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Sun CY, Che YJ, Lu SJ (2015) Preparation and application of collagen scaffold-encapsulated silver nanoparticles and bone morphogenetic protein 2 for enhancing the repair of infected bone. Biotechnol Lett 37(2):467–473

    Article  CAS  PubMed  Google Scholar 

  206. Pacheco H, Vedantham K, Aniket, Young A, Marriott I, El-Ghannam A (2014) Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections. J Biomed Mater Res A 102(12):4213–4223

    PubMed  Google Scholar 

  207. Wang Y, Wang X, Li H, Xue D, Shi Z, Qi Y et al (2011) Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg 131(7):991–1001

    Article  PubMed  Google Scholar 

  208. Li X, Xu J, Filion TM, Ayers DC, Song J (2013) pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute. Clin Orthop Relat Res 471(8):2540–2547

    Article  PubMed  Google Scholar 

  209. Guelcher SA, Brown KV, Li B, Guda T, Lee B-H, Wenke JC (2011) Dual-purpose bone grafts improve healing and reduce infection. J Orthop Trauma 25(8):477–482

    Article  PubMed  Google Scholar 

  210. Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33(10):2813–2822

    Article  CAS  PubMed  Google Scholar 

  211. Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y et al (2016) Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 31:388–400

    Article  CAS  PubMed  Google Scholar 

  212. Bose S, Banerjee D, Bandyopadhyay A (2017) Chapter 1—Introduction to biomaterials and devices for bone disorders. In: Bose S, Bandyopadhyay A (eds) Materials for bone disorders. Academic, New York, pp 1–27

    Google Scholar 

  213. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  214. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312

    Article  CAS  PubMed  Google Scholar 

  215. Kiran A, Kumar T, Sanghavi R, Doble M, Ramakrishna S (2018) Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings. Nanomaterials. 8(10):860

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Afewerki gratefully acknowledges the financial support from the Sweden-America Foundation (The Family Mix Entrepreneur Foundation) and the Olle Engkvist Byggmästare Foundation. Professor Lobo and Professor Marciano acknowledge the National Council for Scientific and Technological Development for support (CNPq, #303752/2017-3 to AOL and #304133/2017-5 to FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Oliveira Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afewerki, S. et al. (2020). Advances in Antimicrobial and Osteoinductive Biomaterials. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34471-9_1

Download citation

Publish with us

Policies and ethics