Skip to main content

Minimally Invasive Technologies for Biosensing

  • Chapter
  • First Online:
Interfacing Bioelectronics and Biomedical Sensing

Abstract

Minimally invasive biosensors are emerging as powerful tools to enable personalized healthcare and precision medicine. Recent advances in biotechnology, wireless communication, and flexible electronics have offered unprecedented opportunity to develop minimally invasive biosensors for commercial applications. In this chapter, we discuss emerging technologies of minimally invasive biosensing and their working principle, applications, and challenges. We also present areas where further endeavors are needed and future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashammakhi, N., Ahadian, S., Darabi, M. A., El Tahchi, M., Lee, J., Suthiwanich, K., Sheikhi, A., Dokmeci, M. R., Oklu, R., & Khademhosseini, A. (2019). Minimally invasive and regenerative therapeutics. Advanced Materials, 31(1), 1804041.

    Article  Google Scholar 

  2. Daddona, P. E., Fieldson, G. T., Nat, A. S., & Lin, W.-Q. (2000). Minimally invasive detecting device. Google Patents.

    Google Scholar 

  3. Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology, 32(7), 363–371.

    Article  Google Scholar 

  4. Wang, J. (2006). Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21(10), 1887–1892.

    Article  Google Scholar 

  5. Corstjens, A. M., Ligtenberg, J. J., van der Horst, I. C., Spanjersberg, R., Lind, J. S., Tulleken, J. E., Meertens, J. H., & Zijlstra, J. G. (2006). Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Critical Care, 10(5), R135.

    Article  Google Scholar 

  6. Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13(12), 2210–2251.

    Article  Google Scholar 

  7. Teerinen, T., Lappalainen, T., & Erho, T. (2014). A paper-based lateral flow assay for morphine. Analytical and Bioanalytical Chemistry, 406(24), 5955–5965.

    Article  Google Scholar 

  8. Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A., & Luong, J. H. T. (2015). Emerging technologies for next-generation point-of-care testing. Trends in Biotechnology, 33(11), 692–705.

    Article  Google Scholar 

  9. Chin, C. D., Linder, V., & Sia, S. K. (2012). Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip, 12(12), 2118–2134.

    Article  Google Scholar 

  10. Yang, Y., & Gao, W. (2019). Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 48(6), 1465–1491.

    Google Scholar 

  11. Yetisen, A. K., Jiang, N., Tamayol, A., Ruiz-Esparza, G. U., Zhang, Y. S., Medina-Pando, S., Gupta, A., Wolffsohn, J. S., Butt, H., Khademhosseini, A., & Yun, S.-H. (2017). Paper-based microfluidic system for tear electrolyte analysis. Lab on a Chip, 17(6), 1137–1148.

    Article  Google Scholar 

  12. Bihar, E., Deng, Y., Miyake, T., Saadaoui, M., Malliaras, G. G., & Rolandi, M. (2016). A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Scientific Reports, 6, 27582.

    Article  Google Scholar 

  13. Sun, W., Lee, J., Zhang, S., Benyshek, C., Dokmeci, M. R., & Khademhosseini, A. (2018). Engineering precision medicine. Advanced Science, 0(0), 1801039.

    Google Scholar 

  14. Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., & Kiriya, D. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509.

    Article  Google Scholar 

  15. Windmiller, J. R., & Wang, J. (2013). Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 25(1), 29–46.

    Article  Google Scholar 

  16. Miyamoto, A., Lee, S., Cooray, N. F., Lee, S., Mori, M., Matsuhisa, N., Jin, H., Yoda, L., Yokota, T., & Itoh, A. (2017). Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 12(9), 907.

    Article  Google Scholar 

  17. Oh, J. Y., Rondeau-Gagné, S., Chiu, Y.-C., Chortos, A., Lissel, F., Wang, G.-J. N., Schroeder, B. C., Kurosawa, T., Lopez, J., & Katsumata, T. (2016). Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539(7629), 411.

    Article  Google Scholar 

  18. Sessolo, M., Khodagholy, D., Rivnay, J., Maddalena, F., Gleyzes, M., Steidl, E., Buisson, B., & Malliaras, G. G. (2013). Easy-to-fabricate conducting polymer microelectrode arrays. Advanced Materials, 25(15), 2135–2139.

    Article  Google Scholar 

  19. Park, S., Heo, S. W., Lee, W., Inoue, D., Jiang, Z., Yu, K., Jinno, H., Hashizume, D., Sekino, M., & Yokota, T. (2018). Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 561(7724), 516.

    Article  Google Scholar 

  20. Wang, S., Xu, J., Wang, W., Wang, G.-J. N., Rastak, R., Molina-Lopez, F., Chung, J. W., Niu, S., Feig, V. R., & Lopez, J. (2018). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 555(7694), 83.

    Article  Google Scholar 

  21. Zhang, S., Hubis, E., Tomasello, G., Soliveri, G., Kumar, P., & Cicoira, F. (2017). Patterning of stretchable organic electrochemical transistors. Chemistry of Materials, 29(7), 3126–3132.

    Article  Google Scholar 

  22. Krishnan, S. R., Ray, T. R., Ayer, A. B., Ma, Y., Gutruf, P., Lee, K., Lee, J. Y., Wei, C., Feng, X., & Ng, B. (2018). Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Science Translational Medicine, 10(465), eaat8437.

    Article  Google Scholar 

  23. Enzo Pasquale, S., Lorussi, F., Mazzoldi, A., & Rossi, D. D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460–467.

    Article  Google Scholar 

  24. Yang, Y.-L., Chuang, M.-C., Lou, S.-L., & Wang, J. (2010). Thick-film textile-based amperometric sensors and biosensors. Analyst, 135(6), 1230–1234.

    Article  Google Scholar 

  25. Chuang, M.-C., Windmiller, J. R., Santhosh, P., Ramírez, G. V., Galik, M., Chou, T.-Y., & Wang, J. (2010). Textile-based Electrochemical Sensing: Effect of fabric substrate and detection of nitroaromatic explosives. Electroanalysis, 22(21), 2511–2518.

    Article  Google Scholar 

  26. Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., Andrade, F. J., Schöning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.

    Article  Google Scholar 

  27. Yuk, H., Lu, B., & Zhao, X. (2019). Hydrogel bioelectronics. Chemical Society Reviews, 48(6), 1642–1667.

    Google Scholar 

  28. Wang, J. (2005). Nanomaterial-based electrochemical biosensors. Analyst, 130(4), 421–426.

    Article  Google Scholar 

  29. Parlak, O., Keene, S. T., Marais, A., Curto, V. F., & Salleo, A. (2018). Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 4(7), eaar2904.

    Article  Google Scholar 

  30. Chen, Y., Lu, S., Zhang, S., Li, Y., Qu, Z., Chen, Y., Lu, B., Wang, X., & Feng, X. (2017). Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances, 3(12), e1701629.

    Article  Google Scholar 

  31. Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R. M., Kim, J., Hwang, T., Min, S., Banks, A., Bastien, P., Manco, M. C., Wang, L., Ammann, K. R., Jang, K.-I., Won, P., Han, S., Ghaffari, R., Paik, U., Slepian, M. J., Balooch, G., Huang, Y., & Rogers, J. A. (2016). A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 8(366).

    Google Scholar 

  32. Kim, S.-W., Lee, Y., Park, J., Kim, S., Chae, H., Ko, H., & Kim, J. (2018). A triple-mode flexible e-skin sensor interface for multi-purpose wearable applications. Sensors, 18(1), 78.

    Google Scholar 

  33. Miyamoto, A., Lee, S., Cooray, N. F., Lee, S., Mori, M., Matsuhisa, N., Jin, H., Yoda, L., Yokota, T., Itoh, A., Sekino, M., Kawasaki, H., Ebihara, T., Amagai, M., & Someya, T. (2017). Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 12, 907.

    Article  Google Scholar 

  34. Wang, C., Li, X., Hu, H., Zhang, L., Huang, Z., Lin, M., Zhang, Z., Yin, Z., Huang, B., Gong, H., Bhaskaran, S., Gu, Y., Makihata, M., Guo, Y., Lei, Y., Chen, Y., Wang, C., Li, Y., Zhang, T., Chen, Z., Pisano, A. P., Zhang, L., Zhou, Q., & Xu, S. (2018). Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2(9), 687–695.

    Article  Google Scholar 

  35. Rose, D. P., Ratterman, M. E., Griffin, D. K., Hou, L., Kelley-Loughnane, N., Naik, R. R., Hagen, J. A., Papautsky, I., & Heikenfeld, J. C. (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering, 62(6), 1457–1465.

    Article  Google Scholar 

  36. Bandodkar, A. J., Hung, V. W. S., Jia, W., Valdés-Ramírez, G., Windmiller, J. R., Martinez, A. G., Ramírez, J., Chan, G., Kerman, K., & Wang, J. (2013). Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, 138(1), 123–128.

    Article  Google Scholar 

  37. Gao, W., Nyein, H. Y. Y., Shahpar, Z., Fahad, H. M., Chen, K., Emaminejad, S., Gao, Y., Tai, L.-C., Ota, H., Wu, E., Bullock, J., Zeng, Y., Lien, D.-H., & Javey, A. (2016). Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sensors, 1(7), 866–874.

    Article  Google Scholar 

  38. Yao, H., Shum, A. J., Cowan, M., Lähdesmäki, I., & Parviz, B. A. (2011). A contact lens with embedded sensor for monitoring tear glucose level. Biosensors and Bioelectronics, 26(7), 3290–3296.

    Article  Google Scholar 

  39. Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., Harris, N., Kivioja, J., & Ryhänen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS Nano, 7(12), 11166–11173.

    Article  Google Scholar 

  40. Bandodkar, A. J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., & Wang, J. (2015). Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Analytical Chemistry, 87(1), 394–398.

    Article  Google Scholar 

  41. Tehrani, Z., Korochkina, T., Govindarajan, S., Thomas, D. J., O’Mahony, J., Kettle, J., Claypole, T. C., & Gethin, D. T. (2015). Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Organic Electronics, 26, 386–394.

    Article  Google Scholar 

  42. Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., Sherman, F., Joyce, J., Hagen, J., Kelley-Loughnane, N., & Naik, R. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.

    Article  Google Scholar 

  43. Sato, K. (1977). The physiology, pharmacology, and biochemistry of the eccrine sweat gland. In R. H. Adrian, E. Helmreich, H. Holzer, R. Jung, K. Kramer, O. Krayer, R. J. Linden, F. Lynen, P. A. Miescher, J. Piiper, H. Rasmussen, A. E. Renold, U. Trendelenburg, K. Ullrich, W. Vogt, & A. Weber (Eds.), Reviews of physiology, biochemistry and pharmacology (Vol. 79, pp. 51–131). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  44. Al-Tamer, Y. Y., Hadi, E. A., & Al-Badrani, I. e. I. (1997). Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urological Research, 25(5), 337–340.

    Article  Google Scholar 

  45. Varghese, S. A., Powell, T. B., Budisavljevic, M. N., Oates, J. C., Raymond, J. R., Almeida, J. S., & Arthur, J. M. (2007). Urine biomarkers predict the cause of glomerular disease. Journal of the American Society of Nephrology, 18(3), 913.

    Article  Google Scholar 

  46. Tesch, G. H. (2010). Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrology, 15(6), 609–616.

    Article  Google Scholar 

  47. Holly, F. J., & Lemp, M. A. (1977). Tear physiology and dry eyes. Survey of Ophthalmology, 22(2), 69–87.

    Article  Google Scholar 

  48. von Thun und Hohenstein-Blaul, N., Funke, S., & Grus, F. H. (2013). Tears as a source of biomarkers for ocular and systemic diseases. Experimental Eye Research, 117, 126–137.

    Article  Google Scholar 

  49. Garg, S. K., Schwartz, S., & Edelman, S. V. (2004). Improved glucose excursions using an implantable real-time continuous glucose sensor in adults with type 1 diabetes. Diabetes Care, 27(3), 734–738.

    Article  Google Scholar 

  50. Degim, I. T., Ilbasmis, S., Dundaroz, R., & Oguz, Y. (2003). Reverse iontophoresis: a non-invasive technique for measuring blood urea level. Pediatric Nephrology, 18(10), 1032–1037.

    Article  Google Scholar 

  51. Risby, T. H., & Solga, S. F. (2006). Current status of clinical breath analysis. Applied Physics B, 85(2), 421–426.

    Article  Google Scholar 

  52. Rogers, J. A. (2017). Nanomesh on-skin electronics. Nature Nanotechnology, 12, 839.

    Article  Google Scholar 

  53. Zhang, S., & Cicoira, F. (2018). Flexible self-powered biosensors. Nature, 561(7724), 466.

    Article  Google Scholar 

  54. Jeong, J.-W., Kim, M. K., Cheng, H., Yeo, W.-H., Huang, X., Liu, Y., Zhang, Y., Huang, Y., & Rogers, J. A. (2014). Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Advanced Healthcare Materials, 3(5), 642–648.

    Article  Google Scholar 

  55. Koo, J. H., Jeong, S., Shim, H. J., Son, D., Kim, J., Kim, D. C., Choi, S., Hong, J.-I., & Kim, D.-H. (2017). Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano, 11(10), 10032–10041.

    Article  Google Scholar 

  56. Kalantar-Zadeh, K., Berean, K. J., Ha, N., Chrimes, A. F., Xu, K., Grando, D., Ou, J. Z., Pillai, N., Campbell, J. L., Brkljača, R., Taylor, K. M., Burgell, R. E., Yao, C. K., Ward, S. A., McSweeney, C. S., Muir, J. G., & Gibson, P. R. (2018). A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nature Electronics, 1(1), 79–87.

    Article  Google Scholar 

  57. Kim, Y. J., Chun, S.-E., Whitacre, J., & Bettinger, C. J. (2013). Self-deployable current sources fabricated from edible materials. Journal of Materials Chemistry B, 1(31), 3781–3788.

    Article  Google Scholar 

  58. Bettinger, C. J. (2015). Materials advances for next-generation ingestible electronic medical devices. Trends in Biotechnology, 33(10), 575–585.

    Article  Google Scholar 

  59. Chai, P. R., Carreiro, S., Innes, B. J., Chapman, B., Schreiber, K. L., Edwards, R. R., Carrico, A. W., & Boyer, E. W. (2017). Oxycodone ingestion patterns in acute fracture pain with digital pills. Anesthesia & Analgesia, 125(6), 2105–2112.

    Article  Google Scholar 

  60. Kaushik, S., Hord, A. H., Denson, D. D., McAllister, D. V., Smitra, S., Allen, M. G., & Prausnitz, M. R. (2001). Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 92(2), 502–504.

    Article  Google Scholar 

  61. Gupta, J., Gill, H. S., Andrews, S. N., & Prausnitz, M. R. (2011). Kinetics of skin resealing after insertion of microneedles in human subjects. Journal of Controlled Release, 154(2), 148–155.

    Article  Google Scholar 

  62. Esfandyarpour, R., Esfandyarpour, H., Javanmard, M., Harris, J. S., & Davis, R. W. (2013). Microneedle biosensor: A method for direct label-free real time protein detection. Sensors and Actuators B-Chemical, 177, 848–855.

    Google Scholar 

  63. Mohan, A. M. V., Windmiller, J. R., Mishra, R. K., & Wang, J. (2017). Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors & Bioelectronics, 91, 574–579.

    Article  Google Scholar 

  64. Vazquez, P., Herzog, G., O’Mahony, C., O’Brien, J., Scully, J., Blake, A., O’Mathuna, C., & Galvin, P. (2014). Microscopic gel-liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sensors and Actuators B-Chemical, 201, 572–578.

    Article  Google Scholar 

  65. Miller, P. R., Narayan, R. J., & Polsky, R. (2016). Microneedle-based sensors for medical diagnosis. Journal of Materials Chemistry B, 4(8), 1379–1383.

    Article  Google Scholar 

  66. Foghandersen, N., Altura, B. M., Altura, B. T., & Siggaardandersen, O. (1995). Composition of interstitial fluid. Clinical Chemistry, 41(10), 1522–1525.

    Article  Google Scholar 

  67. Keum, D. H., Jung, H. S., Wang, T., Shin, M. H., Kim, Y. E., Kim, K. H., Ahn, G. O., & Hahn, S. K. (2015). Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Advanced Healthcare Materials, 4(8), 1153–1158.

    Article  Google Scholar 

  68. Bollella, P., Sharma, S., Cass, A. E. G., & Antiochia, R. (2019). Microneedle-based biosensor for minimally-invasive lactate detection. Biosensors & Bioelectronics, 123, 152–159.

    Article  Google Scholar 

  69. Kim, L. W., KB, Cho, C. H., Park, D. S., Cho, S. J., & Shim, Y. B. (2019). Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sensors and Actuators B: Chemical, 281(15), 14–21.

    Article  Google Scholar 

  70. Chang, H., Zheng, M. J., Yu, X. J., Than, A., Seeni, R. Z., Kang, R. J., Tian, J. Q., Khanh, D. P., Liu, L. B., Chen, P., & Xu, C. J. (2017). A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Advanced Materials, 29(37), 1702243.

    Google Scholar 

  71. Mishra, R. K., Mohan, A. M. V., Soto, F., Chrostowski, R., & Wang, J. (2017). A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst, 142(6), 918–924.

    Article  Google Scholar 

  72. Samant, P. P., & Prausnitz, M. R. (2018). Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4583–4588.

    Article  Google Scholar 

  73. Jina, M. J. T. A., Tamada, J. A., McGill, S., Desai, S., Chua, B., Chang, A., & Christiansen, M. (2014). Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. Journal of Diabetes Science and Technology, 8, 483–487.

    Article  Google Scholar 

  74. Naixin Song, P. X., Shen, W., Javanmard, M., Allen, M. G. (2018). Microwell-array on a flexible needle: A transcutaneous insertable impedance sensor for label-free cytokine detection. In 2018 IEEE Micro Electro Mechanical Systems (MEMS) (pp. 392–395). IEEE.

    Google Scholar 

  75. Zhou, J. X., Ding, F., Tang, L. N., Li, T., Li, Y. H., Zhang, Y. J., Gong, H. Y., Li, Y. T., & Zhang, G. J. (2018). Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst, 143(18), 4469–4475.

    Article  Google Scholar 

  76. Mirza, K. B., Zuliani, C., Hou, B., Ng, F. S., Peters, N. S., & Toumazou, C. (2017). Injection moulded microneedle sensor for real-time wireless pH monitoring. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 189–192). IEEE.

    Google Scholar 

  77. Vazquez, P., O’Mahony, C., O’Brien, J., Scully, J., Blake, A., O’Mathuna, C., Galvin, P., Herzog, G. (2014). Microneedle sensor for voltammetric drug detection in physiological fluids. In SENSORS, 2014 IEEE (pp. 1768–1771). IEEE.

    Google Scholar 

  78. O’Connor, J. (2012). Higher wound care costs are driving treatment research. McKnight’s.

    Google Scholar 

  79. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–a review. Biomedicine, 5(4), 22.

    Google Scholar 

  80. Lochno, P., Kraus-Pfeiffer, G., & Jacobs, P. (2013). Review and basics of frequently used wound dressings. MMW Fortschritte der Medizin, 155(10), 59.

    Article  Google Scholar 

  81. Sarabahi, S. (2012). Recent advances in topical wound care. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India, 45(2), 379.

    Article  Google Scholar 

  82. Frykberg, R. G., & Banks, J. (2015). Challenges in the treatment of chronic wounds. Advances in Wound Care, 4(9), 560–582.

    Article  Google Scholar 

  83. Derakhshandeh, H., Kashaf, S. S., Aghabaglou, F., Ghanavati, I. O., & Tamayol, A. (2018). Smart bandages: The future of wound care. Trends in Biotechnology, 36(12), 1259–1274.

    Google Scholar 

  84. Gianino, E., Miller, C., & Gilmore, J. (2018). Smart wound dressings for diabetic chronic wounds. Bioengineering, 5(3), 51.

    Article  Google Scholar 

  85. Andreu, V., Mendoza, G., Arruebo, M., & Irusta, S. (2015). Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials, 8(8), 5154–5193.

    Article  Google Scholar 

  86. Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923.

    Article  Google Scholar 

  87. Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.

    Article  Google Scholar 

  88. Brown, A. (2015). Phases of the wound healing process. Nursing Times, 111(46), 12–13.

    Google Scholar 

  89. Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr266.

    Article  Google Scholar 

  90. Zhu, X., Zhang, Y., & Hu, C. (2001). Study on the molecular mechanisms involved in the increased collagen synthesis by platelet-derived wound healing factors during wound healing in alloxaninduced diabetic rat. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese Journal of Reparative and Reconstructive Surgery, 15(4), 223–226.

    Google Scholar 

  91. Epstein, F. H., Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341(10), 738–746.

    Article  Google Scholar 

  92. Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. The Lancet, 366(9498), 1736–1743.

    Article  Google Scholar 

  93. Tamayol, A., Akbari, M., Zilberman, Y., Comotto, M., Lesha, E., Serex, L., Bagherifard, S., Chen, Y., Fu, G., & Ameri, S. K. (2016). Flexible pH‐sensing hydrogel fibers for epidermal applications. Advanced Healthcare Materials, 5(6), 711–719.

    Article  Google Scholar 

  94. Rahimi, R., Ochoa, M., Tamayol, A., Khalili, S., Khademhosseini, A., & Ziaie, B. (2017). Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of Carbon−Polyaniline composite. ACS Applied Materials & Interfaces, 9(10), 9015–9023.

    Article  Google Scholar 

  95. Oh, J. H., Hong, S. Y., Park, H., Jin, S. W., Jeong, Y. R., Oh, S. Y., Yun, J., Lee, H., Kim, J. W., & Ha, J. S. (2018). Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Applied Materials & Interfaces, 10(8), 7263–7270.

    Article  Google Scholar 

  96. Mostafalu, P., Lenk, W., Dokmeci, M. R., Ziaie, B., Khademhosseini, A., & Sonkusale, S. R. (2015). Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Transactions on Biomedical Circuits and Systems, 9(5), 670–677.

    Article  Google Scholar 

  97. Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., Yazdi, I. K., Bagherifard, S., Dokmeci, M. R., Ziaie, B., Sonkusale, S. R., & Khademhosseini, A. (2018). Smart bandage for monitoring and treatment of chronic wounds. Small, 14(33), 1703509.

    Article  Google Scholar 

  98. Dowd, S. E., Wolcott, R. D., Sun, Y., McKeehan, T., Smith, E., & Rhoads, D. (2008). Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One, 3(10), e3326.

    Article  Google Scholar 

  99. Davies, C. E., Wilson, M. J., Hill, K. E., Stephens, P., Hill, C. M., Harding, K. G., & Thomas, D. W. (2001). Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated. Wound Repair and Regeneration, 9(5), 332–340.

    Article  Google Scholar 

  100. Dargaville, T. R., Farrugia, B. L., Broadbent, J. A., Pace, S., Upton, Z., & Voelcker, N. H. (2013). Sensors and imaging for wound healing: a review. Biosensors and Bioelectronics, 41, 30–42.

    Article  Google Scholar 

  101. Healy, B., & Freedman, A. (2006). ABC of wound healing: Infections. BMJ: British Medical Journal, 332(7545), 838.

    Article  Google Scholar 

  102. Burd, A., Kwok, C. H., Hung, S. C., Chan, H. S., Gu, H., Lam, W. K., & Huang, L. (2007). A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound Repair and Regeneration, 15(1), 94–104.

    Article  Google Scholar 

  103. Nasajpour, A., Ansari, S., Rinoldi, C., Rad, A. S., Aghaloo, T., Shin, S. R., Mishra, Y. K., Adelung, R., Swieszkowski, W., & Annabi, N. (2018). A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Advanced Functional Materials, 28(3), 1703437.

    Article  Google Scholar 

  104. Pant, J., Goudie, M., Brisbois, E., & Handa, H. (2016). Nitric oxide-releasing polyurethanes. In S. L. Cooper & J. Guan (Eds.), Advances in polyurethane biomaterials (pp. 471–550). Duxford: Woodhead Publishing.

    Google Scholar 

  105. Brisbois, E. J., Bayliss, J., Wu, J., Major, T. C., Xi, C., Wang, S. C., Bartlett, R. H., Handa, H., & Meyerhoff, M. E. (2014). Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomaterialia, 10(10), 4136–4142.

    Article  Google Scholar 

  106. Masters, K. S. B., Leibovich, S. J., Belem, P., West, J. L., & Poole-Warren, L. A. (2002). Effects of nitric oxide releasing poly (vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair and Regeneration, 10(5), 286–294.

    Article  Google Scholar 

  107. Carpenter, A. W., & Schoenfisch, M. H. (2012). Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews, 41(10), 3742–3752.

    Article  Google Scholar 

  108. Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., & Derakhshandeh, H. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138–166.

    Article  Google Scholar 

  109. Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130–141.

    Google Scholar 

  110. Han, G., & Ceilley, R. (2017). Chronic wound healing: a review of current management and treatments. Advances in Therapy, 34(3), 599–610.

    Article  Google Scholar 

  111. Trupp, S., Alberti, M., Carofiglio, T., Lubian, E., Lehmann, H., Heuermann, R., Yacoub-George, E., Bock, K., & Mohr, G. (2010). Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors and Actuators B: Chemical, 150(1), 206–210.

    Article  Google Scholar 

  112. Mohr, G. J., Müller, H., Bussemer, B., Stark, A., Carofiglio, T., Trupp, S., Heuermann, R., Henkel, T., Escudero, D., & González, L. (2008). Design of acidochromic dyes for facile preparation of pH sensor layers. Analytical and Bioanalytical Chemistry, 392(7–8), 1411–1418.

    Article  Google Scholar 

  113. Kassal, P., Kim, J., Kumar, R., de Araujo, W. R., Steinberg, I. M., Steinberg, M. D., & Wang, J. (2015). Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochemistry Communications, 56, 6–10.

    Article  Google Scholar 

  114. James, T. J., Hughes, M. A., Cherry, G. W., & Taylor, R. P. (2003). Evidence of oxidative stress in chronic venous ulcers. Wound Repair and Regeneration, 11(3), 172–176.

    Article  Google Scholar 

  115. Sridhar, V., & Takahata, K. (2009). A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sensors and Actuators A: Physical, 155(1), 58–65.

    Article  Google Scholar 

  116. Sen, C. K. (2009). Wound healing essentials: let there be oxygen. Wound Repair and Regeneration, 17(1), 1–18.

    Article  MathSciNet  Google Scholar 

  117. Li, Z., Roussakis, E., Koolen, P. G., Ibrahim, A. M., Kim, K., Rose, L. F., Wu, J., Nichols, A. J., Baek, Y., & Birngruber, R. (2014). Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomedical Optics Express, 5(11), 3748–3764.

    Article  Google Scholar 

  118. Winter, G. D. (1962). Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 193(4812), 293.

    Article  Google Scholar 

  119. McColl, D., Cartlidge, B., & Connolly, P. (2007). Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. International Journal of Surgery, 5(5), 316–322.

    Article  Google Scholar 

  120. Milne, S. D., Seoudi, I., Al Hamad, H., Talal, T. K., Anoop, A. A., Allahverdi, N., Zakaria, Z., Menzies, R., & Connolly, P. (2016). A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. International Wound Journal, 13(6), 1309–1314.

    Article  Google Scholar 

  121. Mehmood, N., Hariz, A., Templeton, S., & Voelcker, N. H. (2015). A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. Biomedical Engineering Online, 14(1), 17.

    Article  Google Scholar 

  122. Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., Yazdi, I. K., Bagherifard, S., Dokmeci, M. R., & Ziaie, B. (2018). Smart bandage for monitoring and treatment of chronic wounds. Small, 14(33), 1703509.

    Article  Google Scholar 

  123. Bandodkar, A. J., Jeerapan, I., & Wang, J. (2016). Wearable chemical sensors: Present challenges and future prospects. Acs Sensors, 1(5), 464–482.

    Article  Google Scholar 

  124. Han, S. T., Peng, H., Sun, Q., Venkatesh, S., Chung, K. S., Lau, S. C., Zhou, Y., & Roy, V. (2017). An overview of the development of flexible sensors. Advanced Materials, 29(33), 1700375.

    Article  Google Scholar 

  125. Choi, S., Lee, H., Ghaffari, R., Hyeon, T., & Kim, D. H. (2016). Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Advanced Materials, 28(22), 4203–4218.

    Article  Google Scholar 

  126. Dias, D., & Paulo Silva Cunha, J. (2018). Wearable health devices—vital sign monitoring, systems and technologies. Sensors, 18(8), 2414.

    Article  Google Scholar 

  127. Wang, Y., Zhu, C., Pfattner, R., Yan, H., Jin, L., Chen, S., Molina-Lopez, F., Lissel, F., Liu, J., & Rabiah, N. I. (2017). A highly stretchable, transparent, and conductive polymer. Science Advances, 3(3), e1602076.

    Article  Google Scholar 

  128. Boubée de Gramont, F., Zhang, S., Tomasello, G., Kumar, P., Sarkissian, A., & Cicoira, F. (2017). Highly stretchable electrospun conducting polymer nanofibers. Applied Physics Letters, 111(9), 093701.

    Article  Google Scholar 

  129. Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1–37.

    Article  Google Scholar 

  130. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678–1698.

    Google Scholar 

  131. Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228–245.

    Google Scholar 

  132. Wu, W., & Haick, H. (2018). Materials and wearable devices for autonomous monitoring of physiological markers. Advanced Materials, 30(41), 1705024.

    Google Scholar 

  133. Pappa, A.-M., Parlak, O., Scheiblin, G., Mailley, P., Salleo, A., & Owens, R. M. (2018). Organic electronics for point-of-care metabolite monitoring. Trends in Biotechnology, 36(1), 45–59.

    Article  Google Scholar 

  134. Zhang, S., & Cicoira, F. (2017). Water-enabled healing of conducting polymer films. Advanced Materials, 29(40), 1703098.

    Article  Google Scholar 

  135. Huynh, T. P., Sonar, P., & Haick, H. (2017). Advanced materials for use in soft self‐healing devices. Advanced Materials, 29(19), 1604973.

    Article  Google Scholar 

  136. Huynh, T. P., & Haick, H. (2018). Autonomous flexible sensors for health monitoring. Advanced Materials, 30(50), 1802337.

    Article  Google Scholar 

  137. Xu, M., Obodo, D., & Yadavalli, V. K. (2019). The design, fabrication, and applications of flexible biosensing devices–A review. Biosensors and Bioelectronics, 124, 96–114.

    Google Scholar 

  138. Lee, S. P., Klinker, L. E., Ptaszek, L., Work, J., Liu, C., Quivara, F., Webb, C., Dagdeviren, C., Wright, J. A., & Ruskin, J. N. (2015). Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proceedings of the IEEE, 103(4), 682–689.

    Article  Google Scholar 

  139. Zhou, A., Santacruz, S. R., Johnson, B. C., Alexandrov, G., Moin, A., Burghardt, F. L., et al. (2019). A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nature Biomedical Engineering, 3(1), 15.

    Article  Google Scholar 

Download references

Acknowledgments

K. L, M. G, and H. K contributed equally to this work. The authors declare no conflict of interests in this work. This work has been supported by National Institutes of Health (1R01HL140951-01A1, 1R01GM126571-01, 1R01GM126831-01, 1R01EB023052-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khademhosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S. et al. (2020). Minimally Invasive Technologies for Biosensing. In: Cao, H., Coleman, T., Hsiai, T., Khademhosseini, A. (eds) Interfacing Bioelectronics and Biomedical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-34467-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34467-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34466-5

  • Online ISBN: 978-3-030-34467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics