Skip to main content

The DLOC Model

  • Chapter
  • First Online:
  • 406 Accesses

Part of the book series: Automation, Collaboration, & E-Services ((ACES,volume 6))

Abstract

In this chapter, fundamentals in complex network and scheduling theories are reviewed. Together with Collaborative Control Theory, they are the core pillars to the Dynamic Line of Collaboration model. The mathematical formulation of the DLOC model is detailed in five components: the client network, the propagating disruptions or service requests, the servers, the collaboration between servers, and the requirement of control protocols. This chapter concludes with a comparison of the DLOC model with related models found in literature. The comparison highlights that DLOC model is currently the most comprehensive model to capture properties of the network-to-network services of e-Work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Traditionally, “R” in TRP represents “repairman”. For N2N, the service team could be a group of autonomous humans/robots/systems, and some of them conduct operations in cyber space. Repair-agent is more appropriate for the current work.

References

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert R, Jeong H, Barabási A (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  Google Scholar 

  3. Altay N, Green WG III (2006) OR/MS research in disaster operations management. Eur J Oper Res 175(1):475–493

    Article  MATH  Google Scholar 

  4. Ang CC (2006) Optimized recovery of damaged electrical power grids (Doctoral dissertation, Monterey, California. Naval Postgraduate School)

    Google Scholar 

  5. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  6. Bashan A, Parshani R, Havlin S (2011) Percolation in networks composed of connectivity and dependency links. Phys Rev E 83(5):051127

    Article  Google Scholar 

  7. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025–1028

    Article  Google Scholar 

  8. Buzna L, Peters K, Ammoser H, Kuhnert C, Helbing D (2007) Efficient response in cascading disaster spreading. Phys Rev E 75:056107

    Article  Google Scholar 

  9. Caunhye AM, Nie X, Pokharel S (2012) Optimization models in emergency logistics: a literature review. Socio-Econ Plan Sci 46(1):4–13

    Article  Google Scholar 

  10. Cavdaroglu B, Hammel E, Mitchell JE, Sharkey TC, Wallace WA (2013) Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems. Ann Oper Res 203(1):279–294

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen XW, Nof SY (2012) Conflict and error prevention and detection in complex networks. Automatica 48(5):770–778

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen XW, Nof SY (2012) Agent-based error prevention algorithms. Expert Syst Appl 39(1):280–287

    Article  Google Scholar 

  13. Crucitti P, Latora V, Marchiori M (2004) Model for cascading failures in complex networks. Phys Rev E 69(4):045104

    Article  Google Scholar 

  14. Day JM (2014) Fostering emergent resilience: the complex adaptive supply network of disaster relief. Int J Prod Res 52(7):1970–1988

    Article  Google Scholar 

  15. Devadasan P, Zhong H, Nof SY (2013) Collaborative intelligence in knowledge based service planning. Expert Syst Appl 40(17):6778–6787

    Article  Google Scholar 

  16. Drexl M (2012) Synchronization in vehicle routing—a survey of VRPs with multiple synchronization constraints. Transport Sci 46(3):297–316

    Article  Google Scholar 

  17. Erdős P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae (Debrecen) 6:290–297

    MathSciNet  MATH  Google Scholar 

  18. Estler HC, Nordio M, Furia CA, Meyer B (2013) Collaborative debugging. In: Proceedings of 8th international conference on global software engineering, pp 110–119

    Google Scholar 

  19. Gao J, Buldyrev SV, Stanley HE, Havlin S (2012) Networks formed from interdependent networks. Nat Phys 8(1):40–48

    Article  Google Scholar 

  20. Gnanasekaran AM, Moshref-Javadi M, Zhong H, Moghaddam M, Lee S (2013) Impact of patients priority and resource availability in ambulance dispatching. In: Proceedings of 2013 industrial & systems engineering research conference (ISERC)

    Google Scholar 

  21. Hakimi SL (1965) Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13(3):462–475

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia H, Ordóñez F, Dessouky MM (2007) Solution approaches for facility location of medical supplies for large-scale emergencies. Comput Ind Eng 52(2):257–276

    Article  Google Scholar 

  23. Jiang Y, Yuan Y, Huang K, Zhao L (2012) Logistics for large-scale disaster response: achievements and challenges. In: Proceedings of IEEE 45th Hawaii International conference on system science (HICSS), pp 1277–1285

    Google Scholar 

  24. Kenett DY, Perc M, Boccaletti S (2015) Networks of networks—an introduction. Chaos Solitons Fractals 80:1–6

    Article  MATH  Google Scholar 

  25. Krumke SO, de Paepe WE, Poensgen D, Stougie L (2003) News from the online traveling repairman. Theoret Comput Sci 295(1–3):279–294

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee S (2011) The role of preparedness in ambulance dispatching. J Oper Res Soc 62(10):1888–1897

    Article  Google Scholar 

  27. Maya Duque PA, Dolinskaya IS, Sörensen K (2016) Network repair crew scheduling and routing for emergency relief distribution problem. Eur J Oper Res 248(1):272–285

    Article  MathSciNet  MATH  Google Scholar 

  28. Moshref-Javadi M, Lee S (2016) The latency location-routing problem. Eur J Oper Res 255(2):604–619

    Article  MathSciNet  MATH  Google Scholar 

  29. Moshref-Javadi M, Lee S (2013) A taxonomy to the class of minimum latency problems. In: Proceedings of 2013 industrial & systems engineering research conference (ISERC)

    Google Scholar 

  30. Motter AE, Lai Y (2002) Cascade-based attacks on complex networks. Phys Rev E 66:065102(R)

    Article  Google Scholar 

  31. Motter AE, Nishikawa T, Lai Y (2002) Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? Phys Rev E 66:065103(R)

    Article  Google Scholar 

  32. Nurre SG, Cavdaroglu B, Mitchell JE, Sharkey TC, Wallace WA (2012) Restoring infrastructure systems: an integrated network design and scheduling problem. Eur J Oper Res 223(3):794–806

    Article  MathSciNet  MATH  Google Scholar 

  33. Nurre SG, Sharkey TC (2014) Integrated network design and scheduling problems with parallel identical machines: complexity results and dispatching rules. Networks 63(4):306–326

    Article  MathSciNet  MATH  Google Scholar 

  34. Ortuño MT, Cristóbal P, Ferrer JM, Martín-Campo FJ, Muñoz S, Tirado G, Vitoriano B (2013) Decision aid models and systems for humanitarian logistics. a survey. In: Vitoriano B et al (eds) Decision aid models for disaster management and emergencies. Atlantis Press, Paris, pp 17–44

    Chapter  Google Scholar 

  35. Podobnik B, Horvatic D, Lipic T, Perc M, Buldú JM, Stanley HE (2015) The cost of attack in competing networks. J R Soc Interface 12(112). https://doi.org/10.1098/rsif.2015.0770

    Article  Google Scholar 

  36. Shen S (2013) Optimizing designs and operations of a single network or multiple interdependent infrastructures under stochastic arc disruption. Comput Oper Res 40(11):2677–2688

    Article  MathSciNet  MATH  Google Scholar 

  37. Shuang Q, Zhang M, Yuan Y (2014) Node vulnerability of water distribution networks under cascading failures. Reliab Eng Syst Safety 124:132–141

    Article  Google Scholar 

  38. Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans 38(7):547–564

    Article  Google Scholar 

  39. Velasquez JD, Yoon SW, Nof SY (2010) Computer-based collaborative training for transportation security and emergency response. Comput Ind 61(4):380–389

    Article  Google Scholar 

  40. Wang J, Wu Y, Li Y (2015) Attack robustness of cascading load model in interdependent networks. Int J Mod Phys C 26(3), 1550030-1-14

    Article  MathSciNet  Google Scholar 

  41. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442

    Article  MATH  Google Scholar 

  42. Watts D (2002) A simple model of global cascades on random networks. Proc Nat Acad Sci USA 99(9):5766–5771

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu N, Guikema SD, Davidson RA, Nozick LK, Çağnan Z, Vaziri K (2007) Optimizing scheduling of post‐earthquake electric power restoration tasks. Earthq Eng Struct Dyn 36(2):265–284

    Article  Google Scholar 

  44. Yagan O, Qian D, Zhang J, Cochran D (2012) Optimal allocation of interconnecting links in cyber-physical systems: interdependence, cascading failures and robustness. IEEE Trans Parallel Distrib Syst 23(9):1708–1721

    Article  Google Scholar 

  45. Yi W, Özdamar L (2007) A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur J Oper Res 179:1177–1193

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhong H, Reyes Levalle R, Moghaddam M, Nof SY (2015) Collaborative intelligence—definition and measured impacts on internetworked e-Work. Manage Prod Eng Rev 6(1):67–78

    Google Scholar 

  47. Zhong H, Wachs JP, Nof SY (2014) Telerobot-enabled HUB-CI model for collaborative lifecycle management of design and prototyping. Comput Ind 65(4):550–562

    Article  Google Scholar 

  48. Zhong H, Nof SY, Filip FG (2014) Dynamic lines of collaboration in CPS disruption response. In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhong .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhong, H., Nof, S.Y. (2020). The DLOC Model. In: Dynamic Lines of Collaboration. Automation, Collaboration, & E-Services, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-34463-4_3

Download citation

Publish with us

Policies and ethics