Skip to main content

Epigenetic Regulation of Notch Signaling During Drosophila Development

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1218))

Abstract

Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahringer J (2000) NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16(8):351–356

    Article  CAS  PubMed  Google Scholar 

  • Alabi RO, Farber G, Blobel CP (2018) Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds. Physiol Rev 98(4):2025–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AE et al (2011) The enhancer of trithorax and polycomb gene Caf1/p55 is essential for cell survival and patterning in Drosophila development. Development 138(10):1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes VL et al (2018) Systematic analysis of SIN3 histone modifying complex components during development. Sci Rep 8(1):17048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borggrefe T, Liefke R (2012) Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle 11(2):264–276

    Article  CAS  PubMed  Google Scholar 

  • Borggrefe T, Oswald F (2016) Setting the stage for Notch: the Drosophila Su(H)-hairless repressor complex. PLoS Biol 14(7):e1002524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17(11):722–735

    Article  CAS  PubMed  Google Scholar 

  • Bugeon L et al (2011) The NOTCH pathway contributes to cell fate decision in myelopoiesis. Haematologica 96(12):1753–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20(1):14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell AE et al (2018) NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. Elife 7:pii: e31023

    Article  Google Scholar 

  • Cheloufi S, Hochedlinger K (2017) Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 46:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheloufi S et al (2015) The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528(7581):218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KF, Crowther DC (2012) Functional genomics in Drosophila models of human disease. Brief Funct Genomics 11(5):405–415

    Article  CAS  PubMed  Google Scholar 

  • Collins H, Moon NS (2013) The components of Drosophila histone chaperone dCAF-1 are required for the cell death phenotype associated with rbf1 mutation. G3 (Bethesda) 3(10):1639–1647

    Article  CAS  Google Scholar 

  • Cunliffe VT (2004) Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131(12):2983–2995

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398(6727):518–522

    Article  PubMed  CAS  Google Scholar 

  • Deng WM, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128(23):4737–4746

    CAS  PubMed  Google Scholar 

  • Domanitskaya E, Schupbach T (2012) CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster. J Cell Sci 125(Pt 2):399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreval K, Lake RJ, Fan HY (2019) HDAC1 negatively regulates selective mitotic chromatin binding of the Notch effector RBPJ in a KDM5A-dependent manner. Nucleic Acids Res 47(9):4521–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M et al (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25(23):5579–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12(2):219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exner V et al (2006) Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133(21):4163–4172

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Zhang Y (2003) The NuRD complex: linking histone modification to nucleosome remodeling. Curr Top Microbiol Immunol 274:269–290

    CAS  PubMed  Google Scholar 

  • Franz Oswald BT, Dobner T, Bourteele S, Kostezka U, Adler G, Liptay S, Schmid RM (2001) p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21(22):7761–7774

    Article  PubMed Central  Google Scholar 

  • Gause M et al (2006) Nipped-A, the Tra1/TRRAP subunit of the Drosophila SAGA and Tip60 complexes, has multiple roles in Notch signaling during wing development. Mol Cell Biol 26(6):2347–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genethliou N et al (2009) SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch. Biochem Biophys Res Commun 390(4):1114–1120

    Article  CAS  PubMed  Google Scholar 

  • Giaimo BD et al (2018) Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res 46(16):8197–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldez AJ, Cohen SM (2003) Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 130(26):6533–6543

    Article  CAS  PubMed  Google Scholar 

  • Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6(5):347–359

    Article  CAS  PubMed  Google Scholar 

  • Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4(10):786–797

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y et al (2015) Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci U S A 112(47):14641–14646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz HM et al (2010) The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol 30(10):2485–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houlard M et al (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2(11):e181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Housden BE, Li J, Bray SJ (2014) Visualizing Notch signaling in vivo in Drosophila tissues. Methods Mol Biol 1187:101–113

    Article  PubMed  CAS  Google Scholar 

  • Huang H et al (2010) Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 123(Pt 16):2853–2861

    Article  CAS  PubMed  Google Scholar 

  • Jiao R-J, Wu Q-H, Liu J-Y, Chen Y-X (2012) dCAF-1-p55 is essential for Drosophila development and involved in the maintenance of chromosomal stability. Prog Biochem Biophys 39(11):1073–1081

    Article  CAS  Google Scholar 

  • Jones CA et al (1998) The Drosophila esc and E(z) proteins are direct partners in polycomb group-mediated repression. Mol Cell Biol 18(5):2825–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Biol 24(4):534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao HY et al (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12(15):2269–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11(3):345–357

    Article  CAS  PubMed  Google Scholar 

  • Kirik A et al (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18(10):2431–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapholz B et al (2009) CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma 118(2):235–248

    Article  CAS  PubMed  Google Scholar 

  • Klueg KM, Muskavitch MA (1999) Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: members of the Notch signalling pathway in Drosophila. J Cell Sci 112(Pt 19):3289–3297

    CAS  PubMed  Google Scholar 

  • Kovall RA et al (2017) The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41(3):228–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krude T (1995) Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp Cell Res 220(2):304–311

    Article  CAS  PubMed  Google Scholar 

  • Kugler SJ, Nagel AC (2010) A novel Pzg-NURF complex regulates Notch target gene activity. Mol Biol Cell 21(19):3443–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24(5):251–254

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2015) Overlapping requirements for Tet2 and Tet3 in Normal development and hematopoietic stem cell emergence. Cell Rep 12(7):1133–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liefke R et al (2010) Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes Dev 24(6):590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo PK et al (2019) Inhibition of Notch signaling by the p105 and p180 subunits of Drosophila chromatin assembly factor 1 is required for follicle cell proliferation. J Cell Sci 132(2):jcs224170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez CI et al (2016) The chromatin modifying complex CoREST/LSD1 negatively regulates notch pathway during cerebral cortex development. Dev Neurobiol 76(12):1360–1373

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Schier H, St Johnston D (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 15(11):1393–1405

    Article  CAS  PubMed  Google Scholar 

  • Lu CH et al (2019) Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun Biol 2:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao G, Jin H, Wu L (2017) DDX23-Linc00630-HDAC1 axis activates the Notch pathway to promote metastasis. Oncotarget 8(24):38937–38949

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason HA et al (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28(1–2):49–57

    Article  CAS  PubMed  Google Scholar 

  • Masuya M et al (2002) The soluble Notch ligand, Jagged-1, inhibits proliferation of CD34+ macrophage progenitors. Int J Hematol 75(3):269–276

    Article  CAS  PubMed  Google Scholar 

  • McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201(2):377–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medgett IC, Langer SZ (1984) Heterogeneity of smooth muscle alpha adrenoceptors in rat tail artery in vitro. J Pharmacol Exp Ther 229(3):823–830

    CAS  PubMed  Google Scholar 

  • Mirth CK, Nogueira Alves A, Piper MD (2019) Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. Curr Opin Insect Sci 31:49–57

    Article  PubMed  Google Scholar 

  • Monson EK, de Bruin D, Zakian VA (1997) The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci U S A 94(24):13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan P et al (2011) A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 42(5):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muskavitch MA (1994) Delta-Notch signaling and Drosophila cell fate choice. Dev Biol 166(2):415–430

    Article  CAS  PubMed  Google Scholar 

  • Mutvei AP, Fredlund E, Lendahl U (2015) Frequency and distribution of Notch mutations in tumor cell lines. BMC Cancer 15:311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nefedova Y et al (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111(4):2220–2229

    Article  CAS  PubMed  Google Scholar 

  • Nemetschke L, Knust E (2016) Drosophila crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis. Development 143(23):4543–4553

    Article  CAS  PubMed  Google Scholar 

  • Ntziachristos P et al (2014) From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 25(3):318–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer WH, Jia D, Deng WM (2014) Cis-interactions between Notch and its ligands block ligand-independent Notch activity. Elife 3. https://doi.org/10.7554/eLife.04415

  • Perrimon N (2014) Drosophila developmental biology methods. Methods 68(1):1

    Article  CAS  PubMed  Google Scholar 

  • Pillidge Z, Bray SJ (2019) SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility. EMBO Rep 20(5):pii: e46944

    Article  CAS  Google Scholar 

  • Radtke F, Wilson A, MacDonald HR (2005) Notch signaling in hematopoiesis and lymphopoiesis: lessons from Drosophila. BioEssays 27(11):1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Ridgway P, Almouzni G (2000) CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 113(Pt 15):2647–2658

    CAS  PubMed  Google Scholar 

  • Saj A et al (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18(5):862–876

    Article  CAS  PubMed  Google Scholar 

  • Salazar JL, Yamamoto S (2018) Integration of Drosophila and human genetics to understand notch signaling related diseases. Adv Exp Med Biol 1066:141–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonrock N et al (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281(14):9560–9568

    Article  PubMed  CAS  Google Scholar 

  • Shepard SB, Broverman SA, Muskavitch MA (1989) A tripartite interaction among alleles of Notch, Delta, and Enhancer of split during imaginal development of Drosophila melanogaster. Genetics 122(2):429–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siren M, Portin P (1989) Interaction of hairless, delta, enhancer of split and notch genes of Drosophila melanogaster as expressed in adult morphology. Genet Res 54(1):23–26

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Lu B (2012) Interaction of Notch signaling modulator Numb with alpha-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem 287(21):17716–17728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y et al (2007) CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev Biol 311(1):213–222

    Article  CAS  PubMed  Google Scholar 

  • Tchasovnikarova IA, Kingston RE (2018) Beyond the histone code: a physical map of chromatin states. Mol Cell 69(1):5–7

    Article  CAS  PubMed  Google Scholar 

  • Thomas U, Speicher SA, Knust E (1991) The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111(3):749–761

    CAS  PubMed  Google Scholar 

  • Tolhuis B et al (2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38(6):694–699

    Article  CAS  PubMed  Google Scholar 

  • Tolwinski NS (2017) Introduction: Drosophila-A model system for developmental biology. J Dev Biol 5(3):9

    Article  PubMed Central  Google Scholar 

  • Tyler JK et al (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21(19):6574–6584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2018) The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development. Biol Open 7(2):bio029637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welshons WJ (1958a) A preliminary investigation of pseudoallelism at the notch locus of Drosophila melanogaster. Proc Natl Acad Sci U S A 44(3):254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welshons WJ (1958b) The analysis of a pseudoallelic recessive lethal system at the notch locus of Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 23:171–176

    Article  CAS  PubMed  Google Scholar 

  • Wen P, Quan Z, Xi R (2012) The biological function of the WD40 repeat-containing protein p55/Caf1 in Drosophila. Dev Dyn 241(3):455–464

    Article  CAS  PubMed  Google Scholar 

  • Wu LM et al (2016) Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nat Neurosci 19(8):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M et al (2005) Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132(13):3027–3043

    Article  CAS  PubMed  Google Scholar 

  • Yang G et al (2019) Structural basis of Notch recognition by human gamma-secretase. Nature 565(7738):192–197

    Article  CAS  PubMed  Google Scholar 

  • You A et al (2001) CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc Natl Acad Sci U S A 98(4):1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2013a) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195(1):289–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2013b) CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development. Development 140(17):3635–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2014) Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 3(4):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z et al (2015) Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 72(2):327–337

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z et al (2016) Structure and function of the Su(H)-hairless repressor complex, the major antagonist of Notch signaling in Drosophila melanogaster. PLoS Biol 14(7):e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zacharioudaki E, Bray SJ (2014) Tools and methods for studying Notch signaling in Drosophila melanogaster. Methods 68(1):173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q et al (2014) dBrms1 acts as a positive regulator of Notch signaling in Drosophila wing. J Genet Genomics 41(6):317–325

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Engler A, Taylor V (2018) Notch: an interactive player in neurogenesis and disease. Cell Tissue Res 371(1):73–89

    Article  CAS  PubMed  Google Scholar 

  • Zweidler-McKay PA et al (2005) Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 106(12):3898–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjie Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, C., Phang, CW., Jiao, R. (2020). Epigenetic Regulation of Notch Signaling During Drosophila Development. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 1218. Springer, Cham. https://doi.org/10.1007/978-3-030-34436-8_4

Download citation

Publish with us

Policies and ethics