Skip to main content

Estimation of Timewise Varying Boundary Heat Flux via Bayesian Filters and Markov Chain Monte Carlo Method

  • Chapter
  • First Online:
Computational Intelligence in Emerging Technologies for Engineering Applications

Abstract

This chapter addresses the reconstruction of timewise varying functions within a Bayesian framework. The Markov Chain Monte Carlo method implemented with the Metropolis-Hastings sampler is implemented with a total variation prior model and compared against the results obtained with the Bayesian filter known as SIR (Sampling Importance Resampling). Besides, it is proposed a combination of the Bayesian filter solution (supposed to be obtained online) with the Markov Chain Monte Carlo method solution, consisting of employing the SIR filter solution as the initial state for the Markov Chain Monte Carlo method, allowing for an offline solution refinement with reduced CPU time. An application is presented considering the reconstruction of a boundary heat flux applied to a thermally thin plate. The good results obtained for this application indicate the feasibility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu, L.A.S., Orlande, H.R.B., Kaipio, J., Kolehmainen, V., Cotta, R.M., Quaresma, J.N.N.: Identification of contact failures in multilayered composites with the Markov chain Monte Carlo method. J. Heat Transf. 136(10), 101, 302 (2014)

    Google Scholar 

  2. Abreu, L.A., Orlande, H.R., Colaço, M.J., Kaipio, J., Kolehmainen, V., Pacheco, C.C., Cotta, R.M.: Detection of contact failures with the Markov chain Monte Carlo method by using integral transformed measurements. Int. J. Thermal Sci. 132, 486–497 (2018)

    Article  Google Scholar 

  3. Bar-Cohen, A., Wang, P.: Thermal management of on-chip hot spot. In: ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 553–567. American Society of Mechanical Engineers, New York (2009)

    Google Scholar 

  4. Beck, J.V., Woodbury, K.A.: Inverse heat conduction problem: sensitivity coefficient insights, filter coefficients, and intrinsic verification. Int. J. Heat Mass Transf. 97, 578–588 (2016)

    Article  Google Scholar 

  5. Chen, T.C., Hsu, S.J.: Input estimation method in the use of electronic device temperature prediction and heat flux inverse estimation. Numer. Heat Transf. A: Appl. 52(9), 795–815 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chen, W.L., Yang, Y.C.: Estimation of the transient heat transfer rate at the boundary of an electronic chip packaging. Numer. Heat Transf. A: Appl. 54(10), 945–961 (2008)

    Article  Google Scholar 

  7. Cheng, J.T., Chen, C.L.: Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics. Exp. Fluids 49(6), 1349–1357 (2010)

    Article  Google Scholar 

  8. Cotta, R.M., Mikhailov, M.D.: Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation. Wiley, Chichester (1997)

    Google Scholar 

  9. Doudard, C., Calloch, S., Hild, F., Roux, S.: Identification of heat source fields from infrared thermography: determination of ‘self-heating’ in a dual-phase steel by using a dog bone sample. Mech. Mater. 42(1), 55–62 (2010)

    Article  Google Scholar 

  10. Eren, G., Aubreton, O., Meriaudeau, F., Secades, L.S., Fofi, D., Naskali, A.T., Truchetet, F., Ercil, A.: Scanning from heating: 3D shape estimation of transparent objects from local surface heating. Opt. Express 17(14), 11,457–11,468 (2009)

    Article  Google Scholar 

  11. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  12. Gu, Y., Wang, L., Chen, W., Zhang, C., He, X.: Application of the meshless generalized finite difference method to inverse heat source problems. Int. J. Heat Mass Transf. 108, 721–729 (2017)

    Article  Google Scholar 

  13. Hetsroni, G., Mosyak, A., Segal, Z.: Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels. IEEE Trans. Comput. Packag. Technol. 24(1), 16–23 (2001)

    Article  Google Scholar 

  14. Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2002). OCLC: 439024729

    Google Scholar 

  15. Kaipio, J.P., Fox, C.: The Bayesian framework for inverse problems in heat transfer. Heat Transf. Eng. 32(9), 718–753 (2011)

    Article  Google Scholar 

  16. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Knupp, D.C., Abreu, L.A.: Explicit boundary heat flux reconstruction employing temperature measurements regularized via truncated eigenfunction expansions. Int. Commun. Heat Mass Transf. 78, 241–252 (2016)

    Article  Google Scholar 

  18. Knupp, D.C., Naveira-Cotta, C.P., Ayres, J.V.C., Orlande, H.R.B., Cotta, R.M.: Space-variable thermophysical properties identification in nanocomposites via integral transforms, Bayesian inference and infrared thermography. Inverse Prob. Sci. Eng. 20(5), 609–637 (2012)

    Article  Google Scholar 

  19. Le Niliot, C., Lefèvre, F.: A method for multiple steady line heat sources identification in a diffusive system: application to an experimental 2D problem. Int. J. Heat Mass Transf. 44(7), 1425–1438 (2001)

    Article  Google Scholar 

  20. Marinetti, S., Vavilov, V.: IR thermographic detection and characterization of hidden corrosion in metals: general analysis. Corros. Sci. 52(3), 865–872 (2010)

    Article  Google Scholar 

  21. Mital, M., Scott, E.P.: Thermal detection of embedded tumors using infrared imaging. J. Biomed. Eng. 129(1), 33–39 (2007)

    Google Scholar 

  22. Orlande, H.R.: Inverse problems in heat transfer: new trends on solution methodologies and applications. J. Heat Transf. 134(3), 031, 011 (2012)

    Google Scholar 

  23. Orlande, H.R.: The use of techniques within the Bayesian framework of statistics for the solution of inverse problems. METTI 6 Advanced School: Thermal Measurements and Inverse Techniques (2015)

    Google Scholar 

  24. Orlande, H.R., Dulikravich, G.S., Neumayer, M., Watzenig, D., Colaço, M.J.: Accelerated Bayesian inference for the estimation of spatially varying heat flux in a heat conduction problem. Numer. Heat Transf. A: Appl. 65(1), 1–25 (2014)

    Article  Google Scholar 

  25. Ozisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. Taylor e Francis, Oxford (2018)

    Book  Google Scholar 

  26. Özişik, M.N., Orlande, H.R., Colaço, M.J., Cotta, R.M.: Finite difference methods in heat transfer. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  27. Pacheco, C.C., Orlande, H.R.B., Colaço, M.J., Dulikravich, G.S.: Estimation of a location and time-dependent high-magnitude heat flux in a heat conduction problem using the Kalman filter and the approximation error model. Numer. Heat Transf. A: Appl. 68(11), 1198–1219 (2015)

    Article  Google Scholar 

  28. Pradere, C., Joanicot, M., Batsale, J.C., Toutain, J., Gourdon, C.: Processing of temperature field in chemical microreactors with infrared thermography. Quant. InfraRed Thermogr. J. 3(1), 117–135 (2006)

    Article  Google Scholar 

  29. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 19(7), 37–38 (2004)

    Article  Google Scholar 

  30. Silva, W.B., Rochoux, M., Orlande, H.R.B., Colaço, M.J., Fudym, O., El Hafi, M., Cuenot, B., Ricci, S.: Application of particle filters to regional-scale wildfire spread. High Temp. High Pressures 43, 415–440 (2014)

    Google Scholar 

  31. Silva, W.B., Dutra, J.C.S., Abreu, L.A.S., Knupp, D.C., Silva Neto, A.J.: Estimation of timewise varying boundary heat flux via Bayesian filters and Markov Chain Monte Carlo method. In: 2nd International Symposium of Modeling Applied to Engineering (MAI2016), 18 Convención Científica de Ingeniería y Arquitectura. Havana, Cuba (2016)

    Google Scholar 

  32. Silva, W.B., Dutra, J.C.S., Costa, J.M.J., Abreu, L.A.S., Knupp, D.C., Silva Neto, A.J.: A hybrid estimation scheme based on the sequential importance resampling particle filter and the particle swarm optimization (PSO-SIR). In: Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, pp. 247–261. Springer, Berlin (2019)

    Google Scholar 

  33. Silva Neto, A.J., Ozisik, M.N.: Simultaneous estimation of location and timewise-varying strength of a plane heat source. Numer. Heat Transf. A: Appl. 24(4), 467–477 (1993)

    Article  Google Scholar 

  34. Silva Neto, A.J., Ozisik, M.N.: The estimation of space and time dependent strength of a volumetric heat source in a one-dimensional plate. Int. J. Heat Mass Transf. 37(6), 909–915 (1994)

    Article  Google Scholar 

  35. Smith, A.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2013)

    Google Scholar 

  36. Su, J., Hewitt, G.F.: Inverse heat conduction problem of estimating time varying heat transfer coefficient. Numer. Heat Transf.: A: Appl. 45(8), 777–789 (2004)

    Article  Google Scholar 

  37. Su, J., Silva Neto, A.J.: Two-dimensional inverse heat conduction problem of source strength estimation in cylindrical rods. Appl. Math. Model. 25(10), 861–872 (2001)

    Article  Google Scholar 

  38. Wang, J., Zabaras, N.: A Bayesian inference approach to the inverse heat conduction problem. Int. J. Heat Mass Transf. 47(17), 3927–3941 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Brazilian sponsoring agencies FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico and CAPES, Fundação Coordenação de Aperfeiçoamento de pessoal de Nível Superior (Finance Code 001).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva, W.B., Dutra, J.C.S., Knupp, D.C., Abreu, L.A.S., Silva Neto, A.J. (2020). Estimation of Timewise Varying Boundary Heat Flux via Bayesian Filters and Markov Chain Monte Carlo Method. In: Llanes Santiago, O., Cruz Corona, C., Silva Neto, A., Verdegay, J. (eds) Computational Intelligence in Emerging Technologies for Engineering Applications. Studies in Computational Intelligence, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-030-34409-2_8

Download citation

Publish with us

Policies and ethics